1.Role of autophagy in treatment of paracetamol-induced liver injury
Guojing XING ; Lifei WANG ; Longlong LUO ; Xiaofeng ZHENG ; Chun GAO ; Xiaohui YU ; Jiucong ZHANG
Journal of Clinical Hepatology 2025;41(2):389-394
N-acetyl-p-aminophenol (APAP) is an antipyretic analgesic commonly used in clinical practice, and APAP overdose can cause severe liver injury and even death. In recent years, the incidence rate of APAP-induced liver injury (AILI) tends to increase, and it has become the second most common cause of liver transplantation worldwide. Autophagy is a highly conserved catabolic process that removes unwanted cytosolic proteins and organelles through lysosomal degradation to achieve the metabolic needs of cells themselves and the renewal of organelles. A large number of studies have shown that autophagy plays a key role in the pathophysiology of AILI, involving the mechanisms such as APAP protein conjugates, oxidative stress, JNK activation, mitochondrial dysfunction, inflammatory response and apoptosis. This article elaborates on the biological mechanism of autophagy in AILI, in order to provide a theoretical basis for the treatment of AILI and the development of autophagy regulators.
2.Research progress in small molecule inhibitors of complement factor B
Shuai WEN ; Yao ZHAO ; Yan WANG ; Xing LI ; Yi MOU ; Zheng-yu JIANG
Acta Pharmaceutica Sinica 2025;60(1):37-47
The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several diseases including paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), C3 glomerular disease (C3G) and age-related macular degeneration (AMD). Complement factor B (CFB) is a trypsin-like serine protein that circulates in the human bloodstream in a latent form. As a key node of the alternative pathway, it is an important target for the treatment of diseases mediated by the complement system. With the successful launch of iptacopan, the CFB small molecule inhibitors has become a current research hotspot, a number of domestic and foreign pharmaceutical companies are actively developing CFB small molecule inhibitors. In this paper, the research progress of CFB small molecule inhibitors in recent years is systematically summarized, the representative compounds and their activities are introduced according to structural types and design ideas, so as to provide reference and ideas for the subsequent research on CFB small molecule inhibitors.
3.Preparation and intestinal absorption mechanism of herpetrione and Herpetospermum caudigerum polysaccharides based self-assembled nanoparticles.
Xiang DENG ; Yu-Wen ZHU ; Ji-Xing ZHENG ; Rui SONG ; Jian-Tao NING ; Ling-Yu HANG ; Zhi-Hui YANG ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2025;50(2):404-412
In this experiment, self-assembled nanoparticles(SANs) were prepared by the pH-driven method, and Her-HCP SAN was constructed by using herpetrione(Her) and Herpetospermum caudigerum polysaccharides(HCPs). The average particle size and polydispersity index(PDI) were used as evaluation indexes for process optimization, and the quality of the final formulation was evaluated in terms of particle size, PDI, Zeta potential, and microstructure. The proposed Her-HCP SAN showed a spheroid structure and uniform morphology, with an average particle size of(244.58±16.84) nm, a PDI of 0.147 1±0.014 8, and a Zeta potential of(-38.52±2.11) mV. Her-HCP SAN significantly increased the saturation solubility of Her by 2.69 times, with a cumulative release of 90.18% within eight hours. The results of in vivo unidirectional intestinal perfusion reveal that Her active pharmaceutical ingredient(API) is most effectively absorbed in the jejunum, where both K_a and P_(app) are significantly higher compared to the ileum(P<0.001). However, the addition of HCP leads to a significant reduction in the P_(app) of Her in the jejunum(P<0.05). Furthermore, the formation of the Her-HCP SAN results in a notably lower P_(app) in the jejunum compared to Her API alone(P<0.001), while both K_a and P_(app) in the ileum are significantly increased(P<0.001, P<0.05). The absorption of Her-HCP SAN at different concentrations in the ileum shows no significant differences, and the pH has no significant effect on the absorption of Her-HCP SAN in the ileum. The addition of the transporter protein inhibitors(indomethacin and rifampicin) significantly increases the absorption parameters K_a and P_(app) of Her-HCP SAN in the ileum(P<0.05,P<0.01), whereas the addition of verapamil has no significant effect on the intestinal absorption parameters of Her-HCP SAN, suggesting that Her may be a substrate for multidrug resistance-associated protein 2 and breast cancer resistance proteins but not a substrate of P-glycoprotein.
Nanoparticles/metabolism*
;
Polysaccharides/pharmacokinetics*
;
Intestinal Absorption/drug effects*
;
Animals
;
Rats
;
Particle Size
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Male
;
Rats, Sprague-Dawley
;
Drug Carriers/chemistry*
;
Drug Compounding
;
Cucurbitaceae/chemistry*
4.Effects of total flavonoids of Dracocephalum moldavica on apoptosis of H9c2 cells induced by OGD/R injury and endoplasmic reticulum stress.
Tian WANG ; Di-Wei LIU ; Tong-Ye WANG ; Xing-Yu ZHANG ; Jian-Guo XING ; Rui-Fang ZHENG
China Journal of Chinese Materia Medica 2025;50(5):1321-1330
This study investigated the effects of total flavonoids of Dracocephalum moldavica(TFDM) on apoptosis in rat H9c2 cells induced by endoplasmic reticulum stress(ERS) established by oxygen-glucose deprivation and reoxygenation(OGD/R) injury and tunicamycin(TM), and explored the potential mechanisms. After successful modeling, the following groups were set in this experiment: control group, model(OGD/R or TM) group, and TFDM low-, medium-, and high-dose groups(12.5, 25, and 50 μg·mL~(-1)). The OGD/R injury model was constructed in vitro. Cell proliferation was assessed using the cell counting kit-8(CCK-8) method. The levels of lactate dehydrogenase(LDH) and creatine kinase MB isoenzyme(CKMB) in the cell supernatant were detected. Western blot was used to assess the expression of ERS-related proteins, including glucose regulatory protein 78(GRP78), C/EBP homologous protein(CHOP), activating transcription factor 6(ATF6), and apoptotic proteins B-cell lymphoma 2(Bcl-2) and Bcl-2-associated X protein(Bax). Apoptosis was detected using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) method. In the TM-induced ERS model, Western blot was used to measure the expression of ERS pathway-related proteins GRP78, CHOP, inositol-requiring enzyme 1(IRE1), X-box binding protein 1(XBP1), protein kinase RNA-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2α(eIF2α), ATF6, p-ATF6, and apoptotic proteins Bcl-2, Bax, cysteinyl aspartate specific proteinase-12(caspase-12), and cleaved caspase-12. Gene expression of GRP78, CHOP, PERK, and ATF6 was detected by real-time fluorescence quantitative PCR(RT-qPCR). Apoptosis was again detected using the TUNEL method. The results showed that in the OGD/R model, compared with the control group, the levels of LDH and CKMB in the cell supernatant were significantly increased in the OGD/R group. Compared with the OGD/R group, the levels of LDH and CKMB in the TFDM group were significantly reduced. Western blot results revealed that compared with the control group, the expression of ERS-related proteins and Bax in the OGD/R group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the OGD/R group, the expression of ERS-related proteins and Bax in the TFDM groups was significantly reduced, and the expression of Bcl-2 was significantly increased. TUNEL assay showed that apoptosis was significantly decreased after TFDM treatment. In the TM-induced ERS experiment, compared with the control group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TM group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the TM group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TFDM group was significantly reduced, and the expression of Bcl-2 was significantly increased. These results suggest that ERS exists in the OGD/R-injured H9c2 cell model, and TFDM can effectively inhibit ERS-induced apoptosis. The mechanism may be related to the downregulation of ERS pathway-related proteins and apoptotic proteins.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Apoptosis/drug effects*
;
Rats
;
Flavonoids/pharmacology*
;
Glucose/metabolism*
;
Cell Line
;
Lamiaceae/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Oxygen/metabolism*
;
Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
5.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
6.Studies on the best production mode of traditional Chinese medicine driven by artificial intelligence and its engineering application.
Zheng LI ; Ning-Tao CHENG ; Xiao-Ping ZHAO ; Yi TAO ; Qi-Long XUE ; Xing-Chu GONG ; Yang YU ; Jie-Qiang ZHU ; Yi WANG
China Journal of Chinese Materia Medica 2025;50(12):3197-3203
The traditional Chinese medicine(TCM) industry is a crucial part of China's pharmaceutical sector and plays a strategic role in ensuring public health and promoting economic and social development. In response to the practical demand for high-quality development of the TCM industry, this paper focused on the bottlenecks encountered during the digital and intelligent transformation of TCM production systems. Specifically, it explored technical strategies and methodologies for constructing the best TCM production mode. An innovative artificial intelligence(AI)-centered technical architecture for TCM production was proposed, focusing on key aspects of production management including process modeling, state evaluation, and decision optimization. Furthermore, a series of critical technologies were developed to realize the best TCM production mode. Finally, a novel AI-driven TCM production mode characterized by a closed-loop system of "measurement-modeling-decision-execution" was presented through engineering case studies. This study is expected to provide a technological pathway for developing new quality productive forces within the TCM industry.
Artificial Intelligence
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional/methods*
;
Humans
7.Efficacy and safety of conventional biplanar and triangulation method for sacroiliac screw placement in the treatment of unstable posterior pelvic ring fractures: A real-world retrospective cohort study.
Yu-Bo ZHENG ; Xing HAN ; Xin ZHAO ; Xi-Guang SANG
Chinese Journal of Traumatology 2025;28(5):336-341
PURPOSE:
The fixation method commonly employed worldwide for treating unstable fractures of the posterior pelvic ring is the percutaneous iliosacral screw technique. However, prolonged operation time and frequent fluoroscopies result in surgical risks. This study aimed to investigate whether a new triangulation method could reduce operative and fluoroscopy times and increase the accuracy of screw placement.
METHODS:
This study is a real-world retrospective cohort analysis that examined a patient cohort who underwent percutaneous iliosacral screw fixation between January 1, 2019 and December 31, 2022. Inclusion criteria were patients (1) diagnosed with posterior pelvic ring instability who underwent pelvic fracture closed reduction and percutaneous S1 transverse-penetrating iliosacral screw placement and (2) aged >18 years. Exclusion criteria were: (1) combined proximal femoral fractures, (2) severe soft tissue injury in the surgical area, (3) incomplete imaging data, and (4) declining to provide written informed consent by the patient. The patients were divided into 2 groups according to the screw insertion method: conventional and triangulation methods. Screw placement and fluoroscopy times recorded by the C-arm were compared between the 2 methods. The accuracy of screw placement was evaluated by Smith grading on postoperative CT. Normality tests were conducted to assess the distribution of the quantitative variables and the Chi-square test was used to compare the qualitative variables.
RESULTS:
The study included a total of 94 patients diagnosed with posterior pelvic ring instability, who underwent percutaneous iliosacral screw placement. The patients were divided into 2 groups: 46 patients treated with the conventional surgical method and 48 patients received the triangulation method. The operation time (61.13±9.69 vs. 35.77±6.27) min and fluoroscopy frequency times (52.15±9.29 vs. 24.40±4.04) of the triangulation method were significantly reduced (p<0.001).
CONCLUSIONS
The use of a triangular positioning technique for the surface positioning of percutaneous iliosacral screws could reduce the operative time and fluoroscopy frequency. And the screw placement accuracy using this new method was comparable to that using other conventional methods.
Humans
;
Retrospective Studies
;
Bone Screws
;
Pelvic Bones/surgery*
;
Male
;
Female
;
Fracture Fixation, Internal/methods*
;
Fractures, Bone/surgery*
;
Adult
;
Middle Aged
;
Fluoroscopy
;
Aged
;
Sacrum/surgery*
;
Operative Time
8.Targeted gene silencing in mouse testicular Sertoli and Leydig cells using adeno-associated virus vectors.
Jing PANG ; Mao-Xing XU ; Xiao-Yu WANG ; Xu FENG ; Yi-Man DUAN ; Xiao-Yan ZHENG ; Yu-Qian CHEN ; Wen YIN ; Ying LIU ; Ju-Xue LI
Asian Journal of Andrology 2025;27(5):627-637
Researchers commonly use cyclization recombination enzyme/locus of X-over P1 (Cre/loxP) technology-based conditional gene knockouts of model mice to investigate the functional roles of genes of interest in Sertoli and Leydig cells within the testis. However, the shortcomings of these genetic tools include high costs, lengthy experimental periods, and limited accessibility for researchers. Therefore, exploring alternative gene silencing techniques is of great practical value. In this study, we employed adeno-associated virus (AAV) as a vector for gene silencing in Sertoli and Leydig cells. Our findings demonstrated that AAV serotypes 1, 8, and 9 exhibited high infection efficiency in both types of testis cells. Importantly, we discovered that all three AAV serotypes exhibited exquisite specificity in targeting Sertoli cells via tubular injection while demonstrating remarkable selectivity in targeting Leydig cells via interstitial injection. We achieved cell-specific knockouts of the steroidogenic acute regulatory ( Star ) and luteinizing hormone/human chorionic gonadotropin receptor (Lhcgr) genes in Leydig cells, but not in Sertoli cells, using AAV9-single guide RNA (sgRNA)-mediated gene editing in Rosa26-LSL-Cas9 mice. Knockdown of androgen receptor ( Ar ) gene expression in Sertoli cells of wild-type mice was achieved via tubular injection of AAV9-short hairpin RNA (shRNA)-mediated targeting. Our findings offer technical approaches for investigating gene function in Sertoli and Leydig cells through AAV9-mediated gene silencing.
Animals
;
Male
;
Leydig Cells/metabolism*
;
Mice
;
Dependovirus/genetics*
;
Sertoli Cells/metabolism*
;
Gene Silencing
;
Genetic Vectors
;
Testis/cytology*
9.RNA Sequencing Reveals Molecular Alternations of Splenocytes Associated with Anti-FⅧ Immune Response in Hemophilia A Murine Model.
Chen-Chen WANG ; Ya-Li WANG ; Yuan-Hua CAI ; Qiao-Yun ZHENG ; Zhen-Xing LIN ; Ying-Yu CHEN
Journal of Experimental Hematology 2025;33(5):1476-1485
OBJECTIVE:
To investigate the molecular alterations of splenocytes associated with anti-factor Ⅷ (FⅧ) immune response and the underlying mechanisms based on hemophilia A (HA) murine model via RNA sequencing (RNA-seq) technology.
METHODS:
Severe HA mice were immunized with recombinant human factor Ⅷ (rhF8) weekly for 4 weeks to establish an FⅧ inhibitor model. High quality raw data were obtained by using bulk RNA-seq and CASAVA base identification technology, and the differentially expressed genes (DEGs) were identified. The DEGs were statistically classified by gene ontology (GO) annotation to obtain information on the major signaling pathways and biological processes involved in anti-FⅧ immune response in HA mouse splenocytes. The cell clusters, genes, and signaling pathway datasets were comprehensively analyzed by GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and single cell RNA-seq (ScRNA-seq) analysis, respectively. Flow cytometry analysis was used to verify the changes in T follicular helper cells (Tfh) and regulatory T cells (Treg).
RESULTS:
A total of 3731 DEGs was identified, including 2275 genes with up-regulated expression and 1456 genes with down-regulated expression. The DEGs were enriched in helper T cell differentiation, cytokine receptor, T cell receptor signaling pathway, ferroptosis, etc. Uniform Manifold Approximation and Project (UMAP) downscaling and visualization analysis yielded a total number of 11 T/NK cell subsets, visualizing the overall expression distribution of C-X-C chemokine-specific receptor gene cxcr5 among these T/NK cell subsets. Higher expression of cxcr5 was found in activated Tfh from FⅧ inhibitor mice, in comparison to the control group. The visualization using Upset plot R language showed a close interaction between Tfh and Treg. Moreover, the increased frequencies of Tfh and the decreased frequencies of Treg in inhibitor mouse splenocytes were further verified by flow cytometry analysis.
CONCLUSION
Multiple immune cell subsets, signaling pathways, and characteristic genes may be involved in the process of anti-FⅧ immune response in HA mouse splenocytes. The molecules involved in the regulation of Tfh/Treg may play key roles, which provide potential biological targets and therapeutic strategies for HA patients with inhibitors in the future.
Animals
;
Hemophilia A/genetics*
;
Mice
;
Sequence Analysis, RNA
;
Disease Models, Animal
;
Spleen/cytology*
;
T-Lymphocytes, Regulatory/immunology*
;
Humans
;
Signal Transduction
;
Factor VIII/immunology*
;
T-Lymphocytes, Helper-Inducer/immunology*
10.Association of C-reactive protein to albumin ratio with all-cause and cardiovascular mortality in patients with chronic kidney disease stages 3-5.
Jie LIU ; Jin ZHAO ; Jinguo YUAN ; Zixian YU ; Yunlong QIN ; Yan XING ; Qiao ZHENG ; Yueru ZHAO ; Xiaoxuan NING ; Shiren SUN
Environmental Health and Preventive Medicine 2025;30():21-21
BACKGROUND:
Chronic kidney disease (CKD) poses a major global health challenge, often foreshadowing poor patient outcomes. The C-reactive protein to albumin ratio (CAR) serves as a pivotal biomarker, demonstrating a strong correlation with adverse outcomes in cardiovascular disease (CVD). This study sought to examine the correlation between CAR and the risk of all-cause and cardiovascular mortality in patients with CKD stages 3-5.
METHODS:
This study utilized data of CKD patients from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2010, with follow-up to December 31, 2019. The optimal CAR cutoff value was identified utilizing the method of maximally selected rank statistics. Multivariable Cox proportional hazards regression model, restricted cubic splines (RCS) model, and subgroup analysis were employed to assess the association between CAR and mortality among CKD patients.
RESULTS:
During a median (with interquartile range) follow-up period of 115 (112,117) months among 2,841 CKD individuals, 1,893 deaths were observed, including 692 deaths due to CVD events. Based on the RCS analysis, a non-linear correlation was observed between CAR and mortality. Using 0.3 as the optimal CAR cutoff value, the cohort was divided into high and low groups. In the fully adjusted model, CKD patients with high CAR values exhibited an elevated risk of all-cause mortality (hazard ratio [HR] 1.53, 95% confidence interval [CI] 1.28-1.83, P < 0.001) and cardiovascular mortality (HR 1.48, 95% CI 1.08-2.02, P = 0.014). Compared to the population aged >65 years (HR 1.32, 95% CI 0.99-1.76, P = 0.064), the risk of cardiovascular mortality was significantly higher in those aged ≤65 years (HR 2.19, 95% CI 1.18-4.09, P = 0.014) with elevated CAR levels.
CONCLUSIONS
A notable correlation exists between the elevation of CAR and increased all-cause and cardiovascular mortality, suggesting its potential as an independent indicator for evaluating the prognosis of patients with CKD stages 3-5.
Humans
;
Renal Insufficiency, Chronic/epidemiology*
;
Cardiovascular Diseases/blood*
;
Male
;
Female
;
Middle Aged
;
C-Reactive Protein/metabolism*
;
Aged
;
Biomarkers/blood*
;
Nutrition Surveys
;
Adult
;
United States/epidemiology*
;
Serum Albumin/analysis*

Result Analysis
Print
Save
E-mail