1.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
2.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
3.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
4.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
5.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
6.Research progress on the effect of miRNA-mediated PPARγ-related signaling pathways on lipid metabolism in steroid-induced osteonecrosis of femoral head.
Hai-Yuan GAO ; Xiao-Ping WANG ; Ming-Wang ZHOU ; Xing YANG ; Bang-Jing HE
Acta Physiologica Sinica 2025;77(3):493-503
Steroid-induced osteonecrosis of femoral head (SONFH) is a disease characterized by femoral head collapse and local pain caused by excessive use of glucocorticoids. Peroxisome proliferator-activated receptor-γ (PPARγ) is mainly expressed in adipose tissue. Wnt/β-catenin, AMPK and other related signaling pathways play an important role in regulating adipocyte differentiation, fatty acid uptake and storage. Bone marrow mesenchymal cells (BMSCs) have the ability to differentiate into adipocytes or osteoblasts, and the use of hormones upregulates PPARγ expression, resulting in BMSCs biased towards adipogenic differentiation. The increase of adipocytes affects the blood supply and metabolism of the femoral head, and the decrease of osteoblasts leads to the loss of trabecular bone, which eventually leads to partial or total ischemic necrosis and collapse of the femoral head. MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate gene expression by inhibiting the transcription or translation of target genes, thereby affecting cell function and disease progression. Studies have shown that miRNAs affect the progression of SONFH by regulating PPARγ lipid metabolism-related signaling pathways. Therefore, it may be an accurate and feasible SONFH treatment strategy to regulate adipogenic-osteoblast differentiation in BMSCs by targeted intervention of miRNA differential expression to improve lipid metabolism. In this paper, the miRNA-mediated PPARγ-related signaling pathways were classified and summarized to clarify their effects on lipid metabolism in SONFH, providing a theoretical reference for miRNA targeted therapy of SONFH, and then providing scientific evidence for SONFH precision medicine.
MicroRNAs/physiology*
;
PPAR gamma/metabolism*
;
Femur Head Necrosis/metabolism*
;
Humans
;
Signal Transduction/physiology*
;
Lipid Metabolism/physiology*
;
Animals
;
Cell Differentiation
;
Mesenchymal Stem Cells/cytology*
;
Glucocorticoids/adverse effects*
7.Molecular mechanism of verbascoside in promoting acetylcholine release of neurotransmitter.
Zhi-Hua ZHOU ; Hai-Yan XING ; Yan LIANG ; Jie GAO ; Yang LIU ; Ting ZHANG ; Li ZHU ; Jia-Long QIAN ; Chuan ZHOU ; Gang LI
China Journal of Chinese Materia Medica 2025;50(2):335-348
The molecular mechanism of verbascoside(OC1) in promoting acetylcholine(ACh) release in the pathogenesis of Alzheimer's disease(AD) was studied. Adrenal pheochromocytoma cells(PC12) of rats induced by β-amyloid protein(1-42)(Aβ_(1-42)) were used as AD models in vitro and were divided into control group, model group(Aβ_(1-42) 10 μmol·L~(-1)), OC1 treatment group(2 and 10 μg·mL~(-1)). The effect of OC1 on phosphorylated proteins in AD models was analyzed by whole protein phosphorylation quantitative omics, and the selectivity of OC1 for calcium channel subtypes was virtually screened in combination with computer-aided drug design. The fluorescence probe Fluo-3/AM was used to detect Ca~(2+) concentration in cells. Western blot analysis was performed to detect the effects of OC1 on the expression of phosphorylated calmodulin-dependent protein kinase Ⅱ(p-CaMKⅡ, Thr286) and synaptic vesicle-related proteins, and UPLC/Q Exactive MS was used to detect the effects of OC1 on ACh release in AD models. The effects of OC1 on acetylcholine esterase(AChE) activity in AD models were detected. The results showed that the differentially modified proteins in the model group and the OC1 treatment group were related to calcium channel activation at three levels: GO classification, KEGG pathway, and protein domain. The results of molecular docking revealed the dominant role of L-type calcium channels. Fluo-3/AM fluorescence intensity decreased under the presence of Ca~(2+) chelating agent ethylene glycol tetraacetic acid(EGTA), L-type calcium channel blocker verapamil, and N-type calcium channel blocker conotoxin, and the effect of verapamil was stronger than that of conotoxin. This confirmed that OC1 promoted extracellular Ca~(2+) influx mainly through its interaction with L-type calcium channel protein. In addition, proteomic analysis and Western blot results showed that the expression of p-CaMKⅡ and downstream vesicle-related proteins was up-regulated after OC1 treatment, indicating that OC1 acted on vesicle-related proteins by activating CaMKⅡ and participated in synaptic remodeling and transmitter release, thus affecting learning and memory. OC1 also decreased the activity of AChE and prolonged the action time of ACh in synaptic gaps.
Animals
;
Rats
;
Glucosides/administration & dosage*
;
Acetylcholine/metabolism*
;
Alzheimer Disease/genetics*
;
PC12 Cells
;
Phenols/chemistry*
;
Neurotransmitter Agents/metabolism*
;
Drugs, Chinese Herbal
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics*
;
Humans
;
Phosphorylation/drug effects*
;
Calcium/metabolism*
;
Polyphenols
8.Preparation and intestinal absorption mechanism of herpetrione and Herpetospermum caudigerum polysaccharides based self-assembled nanoparticles.
Xiang DENG ; Yu-Wen ZHU ; Ji-Xing ZHENG ; Rui SONG ; Jian-Tao NING ; Ling-Yu HANG ; Zhi-Hui YANG ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2025;50(2):404-412
In this experiment, self-assembled nanoparticles(SANs) were prepared by the pH-driven method, and Her-HCP SAN was constructed by using herpetrione(Her) and Herpetospermum caudigerum polysaccharides(HCPs). The average particle size and polydispersity index(PDI) were used as evaluation indexes for process optimization, and the quality of the final formulation was evaluated in terms of particle size, PDI, Zeta potential, and microstructure. The proposed Her-HCP SAN showed a spheroid structure and uniform morphology, with an average particle size of(244.58±16.84) nm, a PDI of 0.147 1±0.014 8, and a Zeta potential of(-38.52±2.11) mV. Her-HCP SAN significantly increased the saturation solubility of Her by 2.69 times, with a cumulative release of 90.18% within eight hours. The results of in vivo unidirectional intestinal perfusion reveal that Her active pharmaceutical ingredient(API) is most effectively absorbed in the jejunum, where both K_a and P_(app) are significantly higher compared to the ileum(P<0.001). However, the addition of HCP leads to a significant reduction in the P_(app) of Her in the jejunum(P<0.05). Furthermore, the formation of the Her-HCP SAN results in a notably lower P_(app) in the jejunum compared to Her API alone(P<0.001), while both K_a and P_(app) in the ileum are significantly increased(P<0.001, P<0.05). The absorption of Her-HCP SAN at different concentrations in the ileum shows no significant differences, and the pH has no significant effect on the absorption of Her-HCP SAN in the ileum. The addition of the transporter protein inhibitors(indomethacin and rifampicin) significantly increases the absorption parameters K_a and P_(app) of Her-HCP SAN in the ileum(P<0.05,P<0.01), whereas the addition of verapamil has no significant effect on the intestinal absorption parameters of Her-HCP SAN, suggesting that Her may be a substrate for multidrug resistance-associated protein 2 and breast cancer resistance proteins but not a substrate of P-glycoprotein.
Nanoparticles/metabolism*
;
Polysaccharides/pharmacokinetics*
;
Intestinal Absorption/drug effects*
;
Animals
;
Rats
;
Particle Size
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Male
;
Rats, Sprague-Dawley
;
Drug Carriers/chemistry*
;
Drug Compounding
;
Cucurbitaceae/chemistry*
9.Shexiang Tongxin Dropping Pill Improves Stable Angina Patients with Phlegm-Heat and Blood-Stasis Syndrome: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial.
Ying-Qiang ZHAO ; Yong-Fa XING ; Ke-Yong ZOU ; Wei-Dong JIANG ; Ting-Hai DU ; Bo CHEN ; Bao-Ping YANG ; Bai-Ming QU ; Li-Yue WANG ; Gui-Hong GONG ; Yan-Ling SUN ; Li-Qi WANG ; Gao-Feng ZHOU ; Yu-Gang DONG ; Min CHEN ; Xue-Juan ZHANG ; Tian-Lun YANG ; Min-Zhou ZHANG ; Ming-Jun ZHAO ; Yue DENG ; Chang-Jiang XIAO ; Lin WANG ; Bao-He WANG
Chinese journal of integrative medicine 2025;31(8):685-693
OBJECTIVE:
To evaluate the efficacy and safety of Shexiang Tongxin Dropping Pill (STDP) in treating stable angina patients with phlegm-heat and blood-stasis syndrome by exercise duration and metabolic equivalents.
METHODS:
This multicenter, randomized, double-blind, placebo-controlled clinical trial enrolled stable angina patients with phlegm-heat and blood-stasis syndrome from 22 hospitals. They were randomized 1:1 to STDP (35 mg/pill, 6 pills per day) or placebo for 56 days. The primary outcome was the exercise duration and metabolic equivalents (METs) assessed by the standard Bruce exercise treadmill test after 56 days of treatment. The secondary outcomes included the total angina symptom score, Chinese medicine (CM) symptom scores, Seattle Angina Questionnaire (SAQ) scores, changes in ST-T on electrocardiogram and adverse events (AEs).
RESULTS:
This trial enrolled 309 patients, including 155 and 154 in the STDP and placebo groups, respectively. STDP significantly prolonged exercise duration with an increase of 51.0 s, compared to a decrease of 12.0 s with placebo (change rate: -11.1% vs. 3.2%, P<0.01). The increase in METs was significantly greater in the STDP group than in the placebo group (change: -0.4 vs. 0.0, change rate: -5.0% vs. 0.0%, P<0.01). The improvement of total angina symptom scores (25.0% vs. 0.0%), CM symptom scores (38.7% vs. 11.8%), reduction of nitroglycerin consumption (100.0% vs. 11.3%), and all domains of SAQ, were significantly greater with STDP than placebo (all P<0.01). The changes in Q-T intervals at 28 and 56 days from baseline were similar between the two groups (both P>0.05). Twenty-five participants (16.3%) with STDP and 16 (10.5%) with placebo experienced AEs (P=0.131), with no serious AEs observed.
CONCLUSION
STDP could improve exercise tolerance in patients with stable angina and phlegm-heat and blood stasis syndrome, with a favorable safety profile. (Registration No. ChiCTR-IPR-15006020).
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Angina, Stable/physiopathology*
;
Aged
;
Syndrome
;
Treatment Outcome
;
Placebos
;
Tablets
10.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction

Result Analysis
Print
Save
E-mail