1.Concordance and pathogenicity of copy number variants detected by non-invasive prenatal screening in 38,611 pregnant women without fetal structural abnormalities.
Yunyun LIU ; Jing WANG ; Ling WANG ; Lin CHEN ; Dan XIE ; Li WANG ; Sha LIU ; Jianlong LIU ; Ting BAI ; Xiaosha JING ; Cechuan DENG ; Tianyu XIA ; Jing CHENG ; Lingling XING ; Xiang WEI ; Yuan LUO ; Quanfang ZHOU ; Ling LIU ; Qian ZHU ; Hongqian LIU
Chinese Medical Journal 2025;138(4):499-501
2.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
3.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
4.Research progress on the diagnosis of pediatric heart failure.
Shi-Yi LEI ; Chen-Yang LI ; Ling-Juan LIU ; Yu-Xing YUAN ; Jie TIAN
Chinese Journal of Contemporary Pediatrics 2025;27(1):127-132
Heart failure is a complex clinical syndrome and pediatric heart failure (PHF) has a high mortality rate. Early diagnosis is crucial for treatment and management of PHF. In clinical practice, various tests and examinations play a key role in the diagnosis of PHF, including continuously updated biomarkers, echocardiography, and cardiac magnetic resonance imaging. This article focuses on summarizing relevant research on biomarkers, examinations, combined testing, clinical models, and the grading and staging of PHF diagnosis, aiming to provide insights and directions for the diagnosis of PHF.
Humans
;
Heart Failure/diagnosis*
;
Child
;
Biomarkers/blood*
;
Echocardiography
;
Magnetic Resonance Imaging
5.Genetic and clinical characteristics of children with RAS-mutated juvenile myelomonocytic leukemia.
Yun-Long CHEN ; Xing-Chen WANG ; Chen-Meng LIU ; Tian-Yuan HU ; Jing-Liao ZHANG ; Fang LIU ; Li ZHANG ; Xiao-Juan CHEN ; Ye GUO ; Yao ZOU ; Yu-Mei CHEN ; Ying-Chi ZHANG ; Xiao-Fan ZHU ; Wen-Yu YANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):548-554
OBJECTIVES:
To investigate the genomic characteristics and prognostic factors of juvenile myelomonocytic leukemia (JMML) with RAS mutations.
METHODS:
A retrospective analysis was conducted on the clinical data of JMML children with RAS mutations treated at the Hematology Hospital of Chinese Academy of Medical Sciences, from January 2008 to November 2022.
RESULTS:
A total of 34 children were included, with 17 cases (50%) having isolated NRAS mutations, 9 cases (27%) having isolated KRAS mutations, and 8 cases (24%) having compound mutations. Compared to children with isolated NRAS mutations, those with NRAS compound mutations showed statistically significant differences in age at onset, platelet count, and fetal hemoglobin proportion (P<0.05). Cox proportional hazards regression model analysis revealed that hematopoietic stem cell transplantation (HSCT) and hepatomegaly (≥2 cm below the costal margin) were factors affecting the survival rate of JMML children with RAS mutations (P<0.05); hepatomegaly was a factor affecting survival in the non-HSCT group (P<0.05).
CONCLUSIONS
Children with NRAS compound mutations have a later onset age compared to those with isolated NRAS mutations. At initial diagnosis, children with NRAS compound mutations have poorer peripheral platelet and fetal hemoglobin levels than those with isolated NRAS mutations. Liver size at initial diagnosis is related to the prognosis of JMML children with RAS mutations. HSCT can improve the prognosis of JMML children with RAS mutations.
Humans
;
Leukemia, Myelomonocytic, Juvenile/therapy*
;
Mutation
;
Male
;
Female
;
Child, Preschool
;
Retrospective Studies
;
Child
;
Infant
;
GTP Phosphohydrolases/genetics*
;
Membrane Proteins/genetics*
;
Adolescent
;
Hematopoietic Stem Cell Transplantation
;
Proportional Hazards Models
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Prognosis
6.RNA Sequencing Reveals Molecular Alternations of Splenocytes Associated with Anti-FⅧ Immune Response in Hemophilia A Murine Model.
Chen-Chen WANG ; Ya-Li WANG ; Yuan-Hua CAI ; Qiao-Yun ZHENG ; Zhen-Xing LIN ; Ying-Yu CHEN
Journal of Experimental Hematology 2025;33(5):1476-1485
OBJECTIVE:
To investigate the molecular alterations of splenocytes associated with anti-factor Ⅷ (FⅧ) immune response and the underlying mechanisms based on hemophilia A (HA) murine model via RNA sequencing (RNA-seq) technology.
METHODS:
Severe HA mice were immunized with recombinant human factor Ⅷ (rhF8) weekly for 4 weeks to establish an FⅧ inhibitor model. High quality raw data were obtained by using bulk RNA-seq and CASAVA base identification technology, and the differentially expressed genes (DEGs) were identified. The DEGs were statistically classified by gene ontology (GO) annotation to obtain information on the major signaling pathways and biological processes involved in anti-FⅧ immune response in HA mouse splenocytes. The cell clusters, genes, and signaling pathway datasets were comprehensively analyzed by GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and single cell RNA-seq (ScRNA-seq) analysis, respectively. Flow cytometry analysis was used to verify the changes in T follicular helper cells (Tfh) and regulatory T cells (Treg).
RESULTS:
A total of 3731 DEGs was identified, including 2275 genes with up-regulated expression and 1456 genes with down-regulated expression. The DEGs were enriched in helper T cell differentiation, cytokine receptor, T cell receptor signaling pathway, ferroptosis, etc. Uniform Manifold Approximation and Project (UMAP) downscaling and visualization analysis yielded a total number of 11 T/NK cell subsets, visualizing the overall expression distribution of C-X-C chemokine-specific receptor gene cxcr5 among these T/NK cell subsets. Higher expression of cxcr5 was found in activated Tfh from FⅧ inhibitor mice, in comparison to the control group. The visualization using Upset plot R language showed a close interaction between Tfh and Treg. Moreover, the increased frequencies of Tfh and the decreased frequencies of Treg in inhibitor mouse splenocytes were further verified by flow cytometry analysis.
CONCLUSION
Multiple immune cell subsets, signaling pathways, and characteristic genes may be involved in the process of anti-FⅧ immune response in HA mouse splenocytes. The molecules involved in the regulation of Tfh/Treg may play key roles, which provide potential biological targets and therapeutic strategies for HA patients with inhibitors in the future.
Animals
;
Hemophilia A/genetics*
;
Mice
;
Sequence Analysis, RNA
;
Disease Models, Animal
;
Spleen/cytology*
;
T-Lymphocytes, Regulatory/immunology*
;
Humans
;
Signal Transduction
;
Factor VIII/immunology*
;
T-Lymphocytes, Helper-Inducer/immunology*
7.A preclinical evaluation and first-in-man case for transcatheter edge-to-edge mitral valve repair using PulveClip® transcatheter repair device.
Gang-Jun ZONG ; Jie-Wen DENG ; Ke-Yu CHEN ; Hua WANG ; Fei-Fei DONG ; Xing-Hua SHAN ; Jia-Feng WANG ; Ni ZHU ; Fei LUO ; Peng-Fei DAI ; Zhi-Fu GUO ; Yong-Wen QIN ; Yuan BAI
Journal of Geriatric Cardiology 2025;22(2):265-269
8.Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury.
Xin-Liang WANG ; Zong-Yi WANG ; Xing-Han CHEN ; Yuan CAI ; Bing HU
Neuroscience Bulletin 2025;41(4):633-648
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Nerve Regeneration/physiology*
;
Mitochondria/metabolism*
;
Zebrafish Proteins/genetics*
;
Axons/metabolism*
;
Signal Transduction/physiology*
;
Axonal Transport/physiology*
;
Nerve Tissue Proteins/genetics*
9.Targeting AMPK related signaling pathways: A feasible approach for natural herbal medicines to intervene non-alcoholic fatty liver disease.
Yongqing CAI ; Lu FANG ; Fei CHEN ; Peiling ZHONG ; Xiangru ZHENG ; Haiyan XING ; Rongrong FAN ; Lie YUAN ; Wei PENG ; Xiaoli LI
Journal of Pharmaceutical Analysis 2025;15(1):101052-101052
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by abnormal deposition of lipid in hepatocytes. If not intervened in time, NAFLD may develop into liver fibrosis or liver cancer, and ultimately threatening life. NAFLD has complicated etiology and pathogenesis, and there are no effective therapeutic means and specific drugs. Currently, insulin sensitizers, lipid-lowering agents and hepatoprotective agents are often used for clinical intervention, but these drugs have obvious side effects, and their effectiveness and safety need to be further confirmed. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in maintaining energy homeostasis. Activated AMPK can enhance lipid degradation, alleviate insulin resistance (IR), suppress oxidative stress and inflammatory response, and regulate autophagy, thereby alleviating NAFLD. Natural herbal medicines have received extensive attention recently because of their regulatory effects on AMPK and low side effects. In this article, we reviewed the biologically active natural herbal medicines (such as natural herbal medicine formulas, extracts, polysaccharides, and monomers) that reported in recent years to treat NAFLD via regulating AMPK, which can serve as a foundation for subsequent development of candidate drugs for NAFLD.
10.Laboratory Diagnosis and Molecular Epidemiological Characterization of the First Imported Case of Lassa Fever in China.
Yu Liang FENG ; Wei LI ; Ming Feng JIANG ; Hong Rong ZHONG ; Wei WU ; Lyu Bo TIAN ; Guo CHEN ; Zhen Hua CHEN ; Can LUO ; Rong Mei YUAN ; Xing Yu ZHOU ; Jian Dong LI ; Xiao Rong YANG ; Ming PAN
Biomedical and Environmental Sciences 2025;38(3):279-289
OBJECTIVE:
This study reports the first imported case of Lassa fever (LF) in China. Laboratory detection and molecular epidemiological analysis of the Lassa virus (LASV) from this case offer valuable insights for the prevention and control of LF.
METHODS:
Samples of cerebrospinal fluid (CSF), blood, urine, saliva, and environmental materials were collected from the patient and their close contacts for LASV nucleotide detection. Whole-genome sequencing was performed on positive samples to analyze the genetic characteristics of the virus.
RESULTS:
LASV was detected in the patient's CSF, blood, and urine, while all samples from close contacts and the environment tested negative. The virus belongs to the lineage IV strain and shares the highest homology with strains from Sierra Leone. The variability in the glycoprotein complex (GPC) among different strains ranged from 3.9% to 15.1%, higher than previously reported for the seven known lineages. Amino acid mutation analysis revealed multiple mutations within the GPC immunogenic epitopes, increasing strain diversity and potentially impacting immune response.
CONCLUSION
The case was confirmed through nucleotide detection, with no evidence of secondary transmission or viral spread. The LASV strain identified belongs to lineage IV, with broader GPC variability than previously reported. Mutations in the immune-related sites of GPC may affect immune responses, necessitating heightened vigilance regarding the virus.
Humans
;
China/epidemiology*
;
Genome, Viral
;
Lassa Fever/virology*
;
Lassa virus/classification*
;
Molecular Epidemiology
;
Phylogeny

Result Analysis
Print
Save
E-mail