1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Association between lifestyle and fat mass index in different positions of children and adolescents
MA Qi, CHEN Manman, MA Ying, GAO Di, LI Yanhui, DONG Yanhui, MA Jun, XING Yi
Chinese Journal of School Health 2024;45(7):1021-1025
Objective:
To explore the association between lifestyle and fat mass index (FMI) in different positions of children and adolescents aged 7-18, so as to provide a scientific basis for health promotion in children and adolescents.
Methods:
A total of 1 531 students aged 7-18 was selected by intentional sampling from 4 schools in Tongzhou District, Beijing from September to December in 2020 and August in 2022. Questionnaire survey was used to collect lifestyle including dietary behavior, moderate to vigorous physical activity, smoke and drink behaviors, sleep time and sleep quality. Dual energy Xray absorptiometry was employed to assess fat mass, and calculated total, android, trunk, hip, gynoid and leg fat mass index (FMI). The ttest and Chisquare test were used to compare the differences of different lifestyle. Logistic regression was used to analysis association between lifestyle and body composition in different positions.
Results:
Compared with healthy lifestyle, unhealthy lifestyle had higher risk for hightrunk FMI (OR=1.40, P<0.05). After adjusted for sex and age, unhealthy lifestyle had higher risk for hightotal FMI, highandroid FMI, hightrunk FMI (OR=1.37, 1.37, 1.50, P<0.05), compared with healthy lifestyle. Stratified analysis found the associations between unhealthy lifestyle and hightotal FMI, highandroid FMI, hightrunk FMI, and highthigh FMI were only significant in girls with 7-12 years old (OR=2.13, 2.46, 2.13, 2.13, P<0.05).
Conclusions
Unhealthy lifestyle is associated with hightotal FMI, highandroid FMI and hightrunk FMI. A healthy lifestyle should be maintained during puberty, especially before puberty, to help children and adolescents reduce body fat and promote a balanced distribution of body composition.
7.Fangji Fuling Decoction Alleviates Sepsis by Blocking MAPK14/FOXO3A Signaling Pathway.
Yi WANG ; Ming-Qi CHEN ; Lin-Feng DAI ; Hai-Dong ZHANG ; Xing WANG
Chinese journal of integrative medicine 2024;30(3):230-242
OBJECTIVE:
To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.
METHODS:
A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.
RESULTS:
FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).
CONCLUSION
FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.
Mice
;
Animals
;
Mitogen-Activated Protein Kinase 14/metabolism*
;
Wolfiporia
;
Lipopolysaccharides/pharmacology*
;
Sepsis/complications*
;
Signal Transduction
;
Inflammation/drug therapy*
;
Oxygen Radioisotopes
8.Quality evaluation of Callicarpa nudiflora from Hainan Province based on simultaneous determination of six anti-inflammatory active components by HPLC
Juan CHEN ; Hong HU ; Yue SHI ; Xing-dong KANG ; Shu-mei WANG ; Yuan-yuan XIE
Acta Pharmaceutica Sinica 2024;59(5):1408-1421
The anti-inflammatory efficacy of
9.Study on fluvoxamine maleate sustained-release pellets and its compression technology
Ming-hui XU ; Xing-yue ZHANG ; Qiao DONG ; Xia ZHAO ; Yu-ru BU ; Le-zhen CHEN
Acta Pharmaceutica Sinica 2024;59(2):439-447
In this study, fluvoxamine maleate sustained-release pellet system tablets were prepared and were used to evaluate their release behaviors
10. Lycium barbarian seed oil activates Nrf2/ARE pathway to reduce oxidative damage in testis of subacute aging rats
Rui-Ying TIAN ; Wen-Xin MA ; Zi-Yu LIU ; Hui-Ming MA ; Sha-Sha XING ; Na HU ; Chang LIU ; Biao MA ; Jia-Yang LI ; Hu-Jun LIU ; Chang-Cai BAI ; Dong-Mei CHEN
Chinese Pharmacological Bulletin 2024;40(3):490-498
Aim To explore the effects of Lycium berry seed oil on Nrf2/ARE pathway and oxidative damage in testis of subacute aging rats. Methods Fifty out of 60 male SD rats, aged 8 weeks, were subcutaneously injected with 125 mg • kg"D-galactosidase in the neck for 8 weeks to establish a subacute senescent rat model. The presence of senescent cells was observed using P-galactosidase ((3-gal), while testicular morphology was examined using HE staining. Serum levels of testosterone (testosterone, T), follicle-stimulating hormone ( follicle stimulating hormone, FSH ) , luteinizing hormone ( luteinizing hormone, LH ) , superoxide dis-mutase ( superoxide dismutase, SOD ) , glutathione ( glutathione, GSH) and malondialdehyde ( malondial-dehyde, MDA) were measured through ELISA, and the expressions of factors related to aging, oxidative damage, and the Nrf2/ARE pathway were assessed via immunohistochemical analysis and Western blotting. Results After successfully identifying the model, the morphology of the testis was improved and the intervention of Lycium seed oil led to a down-regulation in the expression of [3-gal and -yH2AX. The serum levels of SOD, GSH, T, and FSH increased while MDA and LH decreased (P 0. 05) . Additionally, there was an up-regulated expression of Nrf2, GCLC, NQOl, and SOD2 proteins in testicular tissue ( P 0. 05 ) and nuclear expression of Nrf2 in sertoli cells. Conclusion Lycium barbarum seed oil may reduce oxidative damage in testes of subacute senescent rats by activating the Nrf2/ARE signaling pathway.


Result Analysis
Print
Save
E-mail