1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 and effect of Bushen Jianpi Huoxue Decoction.
Tong-Ying CHEN ; Sai FU ; Xiao-Yun LI ; Shu-Hua LIU ; Yi-Fu YANG ; Dong-Sheng YANG ; Yun-Jie ZENG ; Yang-Bo LI ; Dan LUO ; Hong-Xing HUANG ; Lei WAN
China Journal of Chinese Materia Medica 2025;50(3):583-589
Osteoporosis(OP) is a senile bone disease characterized by an imbalance between bone remodeling and bone formation. Targeting pathogenesis of kidney deficiency, spleen deficiency, and blood stasis, Bushen Jianpi Huoxue Decoction has a significant effect on the treatment of OP by tonifying kidney, invigorating spleen, and activating blood circulation. MicroRNA(miRNA) and the anti-apoptotic protein B-cell lymphoma-2-like protein 1(BCL2L1) are closely related to bone cell metabolism. Therefore, in this study, the binding of miR-140-5p to BCL2L1 was detected by dual luciferase assay and polymerase chain reaction(PCR). After silencing or overexpressing miR-140-5p, the apoptosis, autophagy, and osteogenic function of human fetal osteoblast cell line 1.19(HFOB1.19) were observed by flow cytometry and Western blot. Bushen Jianpi Huoxue Decoction-containing serum was prepared by intragastric administration of Bushen Jianpi Huoxue Decoction in rats. Different concentrations of Bushen Jianpi Huoxue Decoction-containing serum were used to treat HFOB1.19 with or without miR-140-5p mimic. The expression of osteogenic proteins in each group was observed, and the role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 was studied, along with the effect of Bushen Jianpi Huoxue Decoction on these processes. As indicated by the dual luciferase assay, miR-140-5p bound to BCL2L1. Flow cytometry and Western blot showed that miR-140-5p promoted apoptosis and inhibited autophagy in HFOB1.19. After intervention with high, medium, and low doses of Bushen Jianpi Huoxue Decoction-medicated serum, compared with the miR-140-5p NC group, the expression of osteocalcin(OCN), osteopontin(OPN), Runt-related transcription factor 2(RUNX2), and transforming growth factor beta 1(TGF-β1) decreased in the miR-140-5p mimic group, while the expression of bone morphogenetic protein 2(BMP2) showed no significant difference under high-dose intervention. Therefore, miR-140-5p/BCL2L1 can promote apoptosis and inhibit autophagy in HFOB1.19. Bushen Jianpi Huoxue Decoction can affect the osteogenic effect of miR-140-5p through BMP2.
MicroRNAs/metabolism*
;
Autophagy/drug effects*
;
Apoptosis/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Cell Line
;
bcl-X Protein/metabolism*
;
Osteoblasts/metabolism*
;
Rats
;
Osteoporosis/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Osteogenesis/drug effects*
7.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
8.Establishment of different pneumonia mouse models suitable for traditional Chinese medicine screening.
Xing-Nan YUE ; Jia-Yin HAN ; Chen PAN ; Yu-Shi ZHANG ; Su-Yan LIU ; Yong ZHAO ; Xiao-Meng ZHANG ; Jing-Wen WU ; Xuan TANG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(15):4089-4099
In this study, lipopolysaccharide(LPS), ovalbumin(OVA), and compound 48/80(C48/80) were administered to establish non-infectious pneumonia models under simulated clinical conditions, and the correlation between their pathological characteristics and traditional Chinese medicine(TCM) syndromes was compared, providing the basis for the selection of appropriate animal models for TCM efficacy evaluation. An acute pneumonia model was established by nasal instillation of LPS combined with intraperitoneal injection for intensive stimulation. Three doses of OVA mixed with aluminum hydroxide adjuvant were injected intraperitoneally on days one, three, and five and OVA was administered via endotracheal drip for excitation on days 14-18 to establish an OVA-induced allergic pneumonia model. A single intravenous injection of three doses of C48/80 was adopted to establish a C48/80-induced pneumonia model. By detecting the changes in peripheral blood leukocyte classification, lung tissue and plasma cytokines, immunoglobulins(Ig), histamine levels, and arachidonic acid metabolites, the multi-dimensional analysis was carried out based on pathological evaluation. The results showed that the three models could cause pulmonary edema, increased wet weight in the lung, and obvious exudative inflammation in lung tissue pathology, especially for LPS. A number of pyrogenic cytokines, inclading interleukin(IL)-6, interferon(IFN)-γ, IL-1β, and IL-4 were significantly elevated in the LPS pneumonia model. Significantly increased levels of prostacyclin analogs such as prostaglandin E2(PGE2) and PGD2, which cause increased vascular permeability, and neutrophils in peripheral blood were significantly elevated. The model could partly reflect the clinical characteristics of phlegm heat accumulating in the lung or dampness toxin obstructing the lung. The OVA model showed that the sensitization mediators IgE and leukotriene E4(LTE4) were increased, and the anti-inflammatory prostacyclin 6-keto-PGF2α was decreased. Immune cells(lymphocytes and monocytes) were decreased, and inflammatory cells(neutrophils and basophils) were increased, reflecting the characteristics of "deficiency", "phlegm", or "dampness". Lymphocytes, monocytes, and basophils were significantly increased in the C48/80 model. The phenotype of the model was that the content of histamine, a large number of prostacyclins(6-keto-PGE1, PGF2α, 15-keto-PGF2α, 6-keto-PGF1α, 13,14-D-15-keto-PGE2, PGD2, PGE2, and PGH2), LTE4, and 5-hydroxyeicosatetraenoic acid(5S-HETE) was significantly increased, and these indicators were associated with vascular expansion and increased vascular permeability. The pyrogenic inflammatory cytokines were not increased. The C48/80 model reflected the characteristics of cold and damp accumulation. In the study, three non-infectious pneumonia models were constructed. The LPS model exhibited neutrophil infiltration and elevated inflammatory factors, which was suitable for the efficacy study of TCM for clearing heat, detoxifying, removing dampness, and eliminating phlegm. The OVA model, which took allergic inflammation as an index, was suitable for the efficacy study of Yiqi Gubiao formulas. The C48/80 model exhibited increased vasoactive substances(histamine, PGs, and LTE4), which was suitable for the efficacy study and evaluation of TCM for warming the lung, dispersing cold, drying dampness, and resolving phlegm. The study provides a theoretical basis for model selection for the efficacy evaluation of TCM in the treatment of pneumonia.
Animals
;
Disease Models, Animal
;
Mice
;
Pneumonia/genetics*
;
Medicine, Chinese Traditional
;
Male
;
Humans
;
Cytokines/immunology*
;
Female
;
Lipopolysaccharides/adverse effects*
;
Lung/drug effects*
;
Drugs, Chinese Herbal
;
Ovalbumin
;
Mice, Inbred BALB C
9.Clinical characteristics of Behçet syndrome in 45 children.
Chen-Xi WEI ; Shu-Feng ZHI ; Li-Jun JIANG ; Xue ZHAO ; Qing-Xiao SU ; Xing-Jie QI ; Zan-Hua RONG
Chinese Journal of Contemporary Pediatrics 2025;27(10):1253-1258
OBJECTIVES:
To study the clinical characteristics of pediatric Behçet syndrome (BS).
METHODS:
A retrospective review was conducted on the medical records of children hospitalized in the Department of Pediatrics at the Second Hospital of Hebei Medical University between December 2014 and December 2024 who met diagnostic criteria for BS.
RESULTS:
Among 45 children with BS, 26 (58%) were male. Oral aphthous ulcers were the most common manifestation (43/45, 96%), followed by genital ulcers (23/45, 51%) and gastrointestinal involvement (18/45, 40%). Genital ulcers were more frequent in girls, whereas ocular involvement was more common in boys (P<0.05). The pathergy test was positive in 10 (22%), and HLA-B51 was positive in 13 (29%). Fecal calprotectin (FC) was elevated in 16 (36%); gastrointestinal involvement was more frequent in children with elevated FC than in those with normal FC (P<0.05). According to the respective criteria, 17 (38%) patients met the International Study Group criteria (1990), 33 (73%) met the International Criteria for Behçet Disease (2014), and 13 (29%) met the Pediatric Behçet Disease criteria (2015).
CONCLUSIONS
Pediatric BS shows marked clinical heterogeneity. HLA-B51 is associated with disease susceptibility.
Humans
;
Behcet Syndrome/genetics*
;
Male
;
Female
;
Child
;
Retrospective Studies
;
Adolescent
;
Child, Preschool
;
Leukocyte L1 Antigen Complex/analysis*
;
HLA-B51 Antigen
10.RNA Sequencing Reveals Molecular Alternations of Splenocytes Associated with Anti-FⅧ Immune Response in Hemophilia A Murine Model.
Chen-Chen WANG ; Ya-Li WANG ; Yuan-Hua CAI ; Qiao-Yun ZHENG ; Zhen-Xing LIN ; Ying-Yu CHEN
Journal of Experimental Hematology 2025;33(5):1476-1485
OBJECTIVE:
To investigate the molecular alterations of splenocytes associated with anti-factor Ⅷ (FⅧ) immune response and the underlying mechanisms based on hemophilia A (HA) murine model via RNA sequencing (RNA-seq) technology.
METHODS:
Severe HA mice were immunized with recombinant human factor Ⅷ (rhF8) weekly for 4 weeks to establish an FⅧ inhibitor model. High quality raw data were obtained by using bulk RNA-seq and CASAVA base identification technology, and the differentially expressed genes (DEGs) were identified. The DEGs were statistically classified by gene ontology (GO) annotation to obtain information on the major signaling pathways and biological processes involved in anti-FⅧ immune response in HA mouse splenocytes. The cell clusters, genes, and signaling pathway datasets were comprehensively analyzed by GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and single cell RNA-seq (ScRNA-seq) analysis, respectively. Flow cytometry analysis was used to verify the changes in T follicular helper cells (Tfh) and regulatory T cells (Treg).
RESULTS:
A total of 3731 DEGs was identified, including 2275 genes with up-regulated expression and 1456 genes with down-regulated expression. The DEGs were enriched in helper T cell differentiation, cytokine receptor, T cell receptor signaling pathway, ferroptosis, etc. Uniform Manifold Approximation and Project (UMAP) downscaling and visualization analysis yielded a total number of 11 T/NK cell subsets, visualizing the overall expression distribution of C-X-C chemokine-specific receptor gene cxcr5 among these T/NK cell subsets. Higher expression of cxcr5 was found in activated Tfh from FⅧ inhibitor mice, in comparison to the control group. The visualization using Upset plot R language showed a close interaction between Tfh and Treg. Moreover, the increased frequencies of Tfh and the decreased frequencies of Treg in inhibitor mouse splenocytes were further verified by flow cytometry analysis.
CONCLUSION
Multiple immune cell subsets, signaling pathways, and characteristic genes may be involved in the process of anti-FⅧ immune response in HA mouse splenocytes. The molecules involved in the regulation of Tfh/Treg may play key roles, which provide potential biological targets and therapeutic strategies for HA patients with inhibitors in the future.
Animals
;
Hemophilia A/genetics*
;
Mice
;
Sequence Analysis, RNA
;
Disease Models, Animal
;
Spleen/cytology*
;
T-Lymphocytes, Regulatory/immunology*
;
Humans
;
Signal Transduction
;
Factor VIII/immunology*
;
T-Lymphocytes, Helper-Inducer/immunology*

Result Analysis
Print
Save
E-mail