1.Molecular mechanism of verbascoside in promoting acetylcholine release of neurotransmitter.
Zhi-Hua ZHOU ; Hai-Yan XING ; Yan LIANG ; Jie GAO ; Yang LIU ; Ting ZHANG ; Li ZHU ; Jia-Long QIAN ; Chuan ZHOU ; Gang LI
China Journal of Chinese Materia Medica 2025;50(2):335-348
The molecular mechanism of verbascoside(OC1) in promoting acetylcholine(ACh) release in the pathogenesis of Alzheimer's disease(AD) was studied. Adrenal pheochromocytoma cells(PC12) of rats induced by β-amyloid protein(1-42)(Aβ_(1-42)) were used as AD models in vitro and were divided into control group, model group(Aβ_(1-42) 10 μmol·L~(-1)), OC1 treatment group(2 and 10 μg·mL~(-1)). The effect of OC1 on phosphorylated proteins in AD models was analyzed by whole protein phosphorylation quantitative omics, and the selectivity of OC1 for calcium channel subtypes was virtually screened in combination with computer-aided drug design. The fluorescence probe Fluo-3/AM was used to detect Ca~(2+) concentration in cells. Western blot analysis was performed to detect the effects of OC1 on the expression of phosphorylated calmodulin-dependent protein kinase Ⅱ(p-CaMKⅡ, Thr286) and synaptic vesicle-related proteins, and UPLC/Q Exactive MS was used to detect the effects of OC1 on ACh release in AD models. The effects of OC1 on acetylcholine esterase(AChE) activity in AD models were detected. The results showed that the differentially modified proteins in the model group and the OC1 treatment group were related to calcium channel activation at three levels: GO classification, KEGG pathway, and protein domain. The results of molecular docking revealed the dominant role of L-type calcium channels. Fluo-3/AM fluorescence intensity decreased under the presence of Ca~(2+) chelating agent ethylene glycol tetraacetic acid(EGTA), L-type calcium channel blocker verapamil, and N-type calcium channel blocker conotoxin, and the effect of verapamil was stronger than that of conotoxin. This confirmed that OC1 promoted extracellular Ca~(2+) influx mainly through its interaction with L-type calcium channel protein. In addition, proteomic analysis and Western blot results showed that the expression of p-CaMKⅡ and downstream vesicle-related proteins was up-regulated after OC1 treatment, indicating that OC1 acted on vesicle-related proteins by activating CaMKⅡ and participated in synaptic remodeling and transmitter release, thus affecting learning and memory. OC1 also decreased the activity of AChE and prolonged the action time of ACh in synaptic gaps.
Animals
;
Rats
;
Glucosides/administration & dosage*
;
Acetylcholine/metabolism*
;
Alzheimer Disease/genetics*
;
PC12 Cells
;
Phenols/chemistry*
;
Neurotransmitter Agents/metabolism*
;
Drugs, Chinese Herbal
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics*
;
Humans
;
Phosphorylation/drug effects*
;
Calcium/metabolism*
;
Polyphenols
2.Effect of Chaihu Jia Longgu Muli Decoction on apoptosis in rats with heart failure after myocardial infarction through IκBα/NF-κB pathway.
Miao-Yu SONG ; Cui-Ling ZHU ; Yi-Zhuo LI ; Xing-Yuan LI ; Gang LIU ; Xiao-Hui LI ; Yan-Qin SUN ; Ming-Yuan DU ; Lei JIANG ; Chao-Chong YUE
China Journal of Chinese Materia Medica 2025;50(8):2184-2192
This study aims to explore the protective effect of Chaihu Jia Longgu Muli Decoction on rats with heart failure after myocardial infarction, and to clarify its possible mechanisms, providing a new basis for basic research on the mechanism of classic Chinese medicinal formula-mediated inflammatory response in preventing and treating heart failure induced by apoptosis after myocardial infarction. A heart failure model after myocardial infarction was established in rats by coronary artery ligation. The rats were divided into sham group, model group, and low, medium, and high-dose groups of Chaihu Jia Longgu Muli Decoction, with 10 rats in each group. The low-dose, medium-dose, and high-dose groups of Chaihu Jia Longgu Muli Decoction were given 6.3, 12.6, and 25.2 g·kg~(-1) doses by gavage, respectively. The sham group and model group were given an equal volume of distilled water by gavage once daily for four consecutive weeks. Cardiac function was assessed using color Doppler echocardiography. Myocardial pathology was detected by hematoxylin-eosin(HE) staining, apoptosis was measured by TUNEL assay, and mitophagy was observed by transmission electron microscopy. The levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, and N-terminal pro-B-type natriuretic peptide(NT-proBNP) in serum were detected by enzyme-linked immunosorbent assay(ELISA). The expression of apoptosis-related proteins B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), and cleaved caspase-3 was detected by Western blot. Additionally, the expression of phosphorylated nuclear transcription factor-κB(NF-κB) p65(p-NF-κB p65)(upstream) and nuclear factor kappa B inhibitor alpha(IκBα)(downstream) in the NF-κB signaling pathway was assessed by Western blot. The results showed that compared with the sham group, left ventricular ejection fraction(LVEF) and left ventricular short axis shortening(LVFS) in the model group were significantly reduced, while left ventricular end diastolic diameter(LVEDD) and left ventricular end systolic diameter(LVESD) increased significantly. Myocardial tissue damage was severe, with widened intercellular spaces and disorganized cell arrangement. The apoptosis rate was increased, and mitochondria were enlarged with increased vacuoles. Levels of TNF-α, IL-1β, and NT-proBNP were elevated, indicating an obvious inflammatory response. The expression of pro-apoptotic factors Bax and cleaved caspase-3 increased, while the anti-apoptotic factor Bcl-2 decreased. The expression of p-NF-κB p65 was upregulated, and the expression of IκBα was downregulated. In contrast, the Chaihu Jia Longgu Muli Decoction groups showed significantly improved of LVEF, LVFS and decreased LVEDD, LVESD compared to the model group. Myocardial tissue damage was alleviated, and intercellular spaces were reduced. The apoptosis rate decreased, mitochondrial volume decreased, and the levels of TNF-α, IL-1β, and NT-proBNP were lower. The expression of pro-apoptotic factors Bax and cleaved caspase-3 decreased, while the expression of the anti-apoptotic factor Bcl-2 increased. Additionally, the expression of p-NF-κB p65 decreased, while IκBα expression increased. In summary, this experimental study shows that Chaihu Jia Longgu Muli Decoction can reduce the inflammatory response and apoptosis rate in rats with heart failure after myocardial infarction, which may be related to the regulation of the IκBα/NF-κB signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Myocardial Infarction/physiopathology*
;
Male
;
NF-kappa B/genetics*
;
Heart Failure/etiology*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
NF-KappaB Inhibitor alpha/genetics*
;
Humans
;
Tumor Necrosis Factor-alpha/genetics*
3.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
4.Advances in SARS-CoV-2 S protein-induced inflammatory response of respiratory epithelial cells
Xing-Jian LIU ; Hua-Hua ZHANG ; Rui-Gang ZHANG
Chinese Journal of Infection Control 2024;23(1):112-118
Pneumonia caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection poses a threat to human life and health,resulting in great socio-economic losses.The structural protein spike protein(S protein)of viruses has always been considered to primarily mediate virus invasion into host cells.S protein can act independently of viruses and cause inflammatory reactions on a variety of cells,therefore,understanding the impact of S protein on the respiratory tract can provide a new perspective for the prevention and treatment of COVID-19.This article reviews the advances in the possible mechanisms and clinical manifestations of SARS-CoV-2 structural protein S protein-induced inflammatory response in respiratory epithelial cells,aiming to provide reference for the prevention and treatment of diseases.
5.Total body water percentage and 3rd space water are novel risk factors for training-related lower extremity muscle injuries in young males
Liang CHEN ; Ke-Xing JIN ; Jing YANG ; Jun-Jie OUYANG ; Han-Gang CHEN ; Si-Ru ZHOU ; Xiao-Qing LUO ; Mi LIU ; Liang KUANG ; Yang-Li XIE ; Yan HU ; Lin CHEN ; Zhen-Hong NI ; Xiao-Lan DU
Chinese Journal of Traumatology 2024;27(3):168-172
Purpose::To identify the risk factors for training-related lower extremity muscle injuries in young males by a non-invasive method of body composition analysis.Methods::A total of 282 healthy young male volunteers aged 18 -20 years participated in this cohort study. Injury location, degree, and injury rate were adjusted by a questionnaire based on the overuse injury assessment methods used in epidemiological studies of sports injuries. The occurrence of training injuries is monitored and diagnosed by physicians and treated accordingly. The body composition was measured using the BodyStat QuadScan 4000 multifrequency Bio-impedance system at 5, 50, 100 and 200 kHz to obtain 4 impedance values. The Shapiro-Wilk test was used to check whether the data conformed to a normal distribution. Data of normal distribution were shown as mean ± SD and analyzed by t-test, while those of non-normal distribution were shown as median (Q 1, Q 3) and analyzed by Wilcoxon rank sum test. The receiver operator characteristic curve and logistic regression analysis were performed to investigate risk factors for developing training-related lower extremity injuries and accuracy. Results::Among the 282 subjects, 78 (27.7%) developed training injuries. Lower extremity training injuries revealed the highest incidence, accounting for 23.4% (66 cases). These patients showed higher percentages of lean body mass ( p = 0.001), total body water (TBW, p=0.006), extracellular water ( p=0.020) and intracellular water ( p=0.010) as well as a larger ratio of basal metabolic rate/total weight ( p=0.006), compared with those without lower extremity muscle injuries. On the contrary, the percentage of body fat ( p=0.001) and body fat mass index ( p=0.002) were lower. Logistic regression analysis showed that TBW percentage > 65.35% ( p=0.050, odds ratio =3.114) and 3rd space water > 0.95% ( p=0.045, odds ratio =2.342) were independent risk factors for lower extremity muscle injuries. Conclusion::TBW percentage and 3rd space water measured with bio-impedance method are potential risk factors for predicting the incidence of lower extremity muscle injuries in young males following training.
6.Advances in Single Particle Inductively Coupled Plasma-Mass Spectrometry Analysis of Silver Nanoparticles in Biological Matrices
Guo-Hui XING ; Li-Hong LIU ; Jun-Hui ZHANG ; Bin HE ; Yong-Guang YIN ; Li-Gang HU ; Gui-Bin JIANG
Chinese Journal of Analytical Chemistry 2024;52(10):1413-1423
Silver nanoparticles(AgNPs)is widely used in biomedicine,daily chemicals,food industry and other fields,and the possible negative health effects of its exposure have attracted widespread attention.Accurate analysis of AgNPs in biological matrices is the basis for biosafety studies of AgNPs.Among the existing analytical techniques,single particle-inductively coupled plasma-mass spectrometry(sp-ICP-MS)has significant advantages such as high sensitivity and simultaneous detection of different forms of silver.However,AgNPs in biological matrices is uniquely highly dynamic and low in content,and the matrix interference is severe,which increases the complexity of the analysis.Although some scholars have reviewed the application of this method for detection of metal nanoparticles in different scenarios,there is a lack of a summary of the quality control and optimization of the whole process from the perspective of AgNPs detection.There is still a lack of reference standards for the sp-ICP-MS analysis of AgNPs in biological matrices,and the existing methods need to be summarized and further optimized to achieve accurate quantification.Therefore,this paper reviewed the recent studies on the analysis of silver-containing nanoparticles in biological matrices based on sp-ICP-MS,mainly included the principles of the technique,the extraction methods of the particles,and the process of data processing,which focused on elaborating and comparing different pre-treatment methods,and explored issues of the current application of sp-ICP-MS for detection of AgNPs in biological tissues and the development of future optimization trends.The current problems of sp-ICP-MS for detection of AgNPs in biological tissues and the future development trend were also discussed.
7.Targeting the chromatin structural changes of antitumor immunity
Li NIAN-NIAN ; Lun DENG-XING ; Gong NINGNING ; Meng GANG ; Du XIN-YING ; Wang HE ; Bao XIANGXIANG ; Li XIN-YANG ; Song JI-WU ; Hu KEWEI ; Li LALA ; Li SI-YING ; Liu WENBO ; Zhu WANPING ; Zhang YUNLONG ; Li JIKAI ; Yao TING ; Mou LEMING ; Han XIAOQING ; Hao FURONG ; Hu YONGCHENG ; Liu LIN ; Zhu HONGGUANG ; Wu YUYUN ; Liu BIN
Journal of Pharmaceutical Analysis 2024;14(4):460-482
Epigenomic imbalance drives abnormal transcriptional processes,promoting the onset and progression of cancer.Although defective gene regulation generally affects carcinogenesis and tumor suppression networks,tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes,which may have significant implications for the development and application of epigenetic therapy,cancer immunotherapy,and their combinations.Herein,we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes,DNA methylation,histone post-translational modification,and chromatin structure in tumor immunogenicity,and introduce these epigenetic research methods.We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immuno-therapy through the complex interaction between cancer epigenetics and cancer immunology.
8.Research advances in receptors related to interaction between SARS-CoV-2 S protein and host cells
Xiao-Min FANG ; Xing-Jian LIU ; Rui-Gang ZHANG
Chinese Journal of Infection Control 2024;23(10):1326-1332
Since the outbreak of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection at the end of 2019,its global research has become a hot spot.The tendency of coronavirus infection mainly depends on the ability of spike protein(S protein)binding to receptors on the cell surface.S protein and its receptor binding domain(S-RBD)not only play a key role in the binding of virus to host cells and the entry of virus into cells,they can also bind to host cell surface receptors such as angiotensin-converting enzyme 2(ACE2),Toll-like receptor(TLRs),cluster of differentiation(CD)147,and neuropilin 1(NRP-1),activating different signaling pathways,thus promo-ting virus to invade host cells and trigger a series of pathogenic processes such as inflammation.Therefore,it is of great significance to study receptors involving in the interaction between S protein and host cells.This article re-views the receptors related to the interaction between S protein and host cells,so as to provide theoretical basis for the prevention and treatment of SARS-CoV-2 infection.
9.Effect of Xiongcan Yishen Formula on ferroptosis in mouse TM3 Leydig cells after oxidative stress injury
A-Jian PENG ; Gang NING ; Hui WU ; Bo-Nan LI ; Ruo-Bing SHI ; Hao-Yu WANG ; Wei LIU ; Xue TANG ; Xing ZHOU
National Journal of Andrology 2024;30(7):640-647
Objective:To investigate the effects of Xiongcan Yishen Formula(XYF)on ferroptosis in mouse TM3 Leydig cells after oxidative stress injury(OSI)induced by H2O2.Methods:An oxidative stress injury model was established in mouse TM3 Leydig cells using H2O2 induction.The modeled TM3 cells were randomly divided into OSI group,XYF group,the ferroptosis inhibitor Ferrostatin-1(F-1)group,and F-1+XYF group,which were respectively intervened with blank serum,20%drug-containing serum,2μmol/L F-1,and2μmol/L F-1+20%drug-containing serum.A control group(normal TM3 cells+blank serum)was also set up.The morphology of cells in each group was observed,and the levels of testosterone,superoxide dismutase(SOD),reactive oxygen spe-cies(ROS),malondialdehyde(MDA),ferritin heavy chain 1(FTH1),solute carrier family 7 member 11(SLC7A11),glutathione(GSH),glutathione peroxidase 4(GPX4),fatty acid CoA ligase 4(FACL4),total iron ions,and ferrous ions were detected.Re-sults:Compared with the model group,the control group showed significantly decreased expression of ROS,MDA,FACL4,total iron,and ferrous ions(P<0.05),and significantly increased levels of testosterone,SOD,GSH,FTH1,SLC7A11,and GPX4(P<0.05).The male silkworm kidney-tonifying formula group significantly promoted testosterone secretion by TM3 cells and upregulated the expression of FTH1,SLC7A11,GPX4,GSH,and SOD in TM3 cells(P<0.05),while significantly downregulating ROS,MDA,FACL4,total iron ions,and ferrous ions(P<0.05).Conclusion:Following H2O2 exposure,oxidative stress can induce ferroptosis in mouse TM3 Leydig cells.XYF can antagonize OSI and ferroptosis in TM3 cells by activating the SLC7A11/GSH/GPX4 axis,which may underlie the mechanism of XYF in the treatment of male late-onset hypogonadism.
10.An evidence-based clinical guideline for the treatment of infectious bone defect with induced membrane technique (version 2023)
Jie SHEN ; Lin CHEN ; Shiwu DONG ; Jingshu FU ; Jianzhong GUAN ; Hongbo HE ; Chunli HOU ; Zhiyong HOU ; Gang LI ; Hang LI ; Fengxiang LIU ; Lei LIU ; Feng MA ; Tao NIE ; Chenghe QIN ; Jian SHI ; Hengsheng SHU ; Dong SUN ; Li SUN ; Guanglin WANG ; Xiaohua WANG ; Zhiqiang WANG ; Hongri WU ; Junchao XING ; Jianzhong XU ; Yongqing XU ; Dawei YANG ; Tengbo YU ; Zhi YUAN ; Wenming ZHANG ; Feng ZHAO ; Jiazhuang ZHENG ; Dapeng ZHOU ; Chen ZHU ; Yueliang ZHU ; Zhao XIE ; Xinbao WU ; Changqing ZHANG ; Peifu TANG ; Yingze ZHANG ; Fei LUO
Chinese Journal of Trauma 2023;39(2):107-120
Infectious bone defect is bone defect with infection or as a result of treatment of bone infection. It requires surgical intervention, and the treatment processes are complex and long, which include bone infection control,bone defect repair and even complex soft tissue reconstructions in some cases. Failure to achieve the goals in any step may lead to the failure of the overall treatment. Therefore, infectious bone defect has been a worldwide challenge in the field of orthopedics. Conventionally, sequestrectomy, bone grafting, bone transport, and systemic/local antibiotic treatment are standard therapies. Radical debridement remains one of the cornerstones for the management of bone infection. However, the scale of debridement and the timing and method of bone defect reconstruction remain controversial. With the clinical application of induced membrane technique, effective infection control and rapid bone reconstruction have been achieved in the management of infectious bone defect. The induced membrane technique has attracted more interests and attention, but the lack of understanding the basic principles of infection control and technical details may hamper the clinical outcomes of induced membrane technique and complications can possibly occur. Therefore, the Chinese Orthopedic Association organized domestic orthopedic experts to formulate An evidence-based clinical guideline for the treatment of infectious bone defect with induced membrane technique ( version 2023) according to the evidence-based method and put forward recommendations on infectious bone defect from the aspects of precise diagnosis, preoperative evaluation, operation procedure, postoperative management and rehabilitation, so as to provide useful references for the treatment of infectious bone defect with induced membrane technique.

Result Analysis
Print
Save
E-mail