1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.Application of Engineered Exosomes in Tumor-targeted Therapy
Jia-Lu SONG ; Yi-Xin JIN ; Xing-Yu MU ; Yu-Huan JIANG ; Jing WANG
Progress in Biochemistry and Biophysics 2025;52(5):1140-1151
Tumors are the second leading cause of death worldwide. Exosomes are a type of extracellular vesicle secreted from multivesicular bodies, with particle sizes ranging from 40 to 160 nm. They regulate the tumor microenvironment, proliferation, and progression by transporting proteins, nucleic acids, and other biomolecules. Compared with other drug delivery systems, exosomes derived from different cells possess unique cellular tropism, enabling them to selectively target specific tissues and organs. This homing ability allows them to cross biological barriers that are otherwise difficult for conventional drug delivery systems to penetrate. Due to their biocompatibility and unique biological properties, exosomes can serve as drug delivery systems capable of loading various anti-tumor drugs. They can traverse biological barriers, evade immune responses, and specifically target tumor tissues, making them ideal carriers for anti-tumor therapeutics. This article systematically summarizes the methods for exosome isolation, including ultracentrifugation, ultrafiltration, size-exclusion chromatography (SEC), immunoaffinity capture, and microfluidics. However, these methods have certain limitations. A combination of multiple isolation techniques can improve isolation efficiency. For instance, combining ultrafiltration with SEC can achieve both high purity and high yield while reducing processing time. Exosome drug loading methods can be classified into post-loading and pre-loading approaches. Pre-loading is further categorized into active and passive loading. Active loading methods, including electroporation, sonication, extrusion, and freeze-thaw cycles, involve physical or chemical disruption of the exosome membrane to facilitate drug encapsulation. Passive loading relies on drug concentration gradients or hydrophobic interactions between drugs and exosomes for encapsulation. Pre-loading strategies also include genetic engineering and co-incubation methods. Additionally, we review approaches to enhance the targeting, retention, and permeability of exosomes. Genetic engineering and chemical modifications can improve their tumor-targeting capabilities. Magnetic fields can also be employed to promote the accumulation of exosomes at tumor sites. Retention time can be prolonged by inhibiting monocyte-mediated clearance or by combining exosomes with hydrogels. Engineered exosomes can also reshape the tumor microenvironment to enhance permeability. This review further discusses the current applications of exosomes in delivering various anti-tumor drugs. Specifically, exosomes can encapsulate chemotherapeutic agents such as paclitaxel to reduce side effects and increase drug concentration within tumor tissues. For instance, exosomes loaded with doxorubicin can mitigate cardiotoxicity and minimize adverse effects on healthy tissues. Furthermore, exosomes can encapsulate proteins to enhance protein stability and bioavailability or carry immunogenic cell death inducers for tumor vaccines. In addition to these applications, exosomes can deliver nucleic acids such as siRNA and miRNA to regulate gene expression, inhibit tumor proliferation, and suppress invasion. Beyond their therapeutic applications, exosomes also serve as tumor biomarkers for early cancer diagnosis. The detection of exosomal miRNA can improve the sensitivity and specificity of diagnosing prostate and pancreatic cancers. Despite their promising potential as drug delivery systems, challenges remain in the standardization and large-scale production of exosomes. This article explores the future development of engineered exosomes for targeted tumor therapy. Plant-derived exosomes hold potential due to their superior biocompatibility, lower toxicity, and abundant availability. Furthermore, the integration of exosomes with artificial intelligence may offer novel applications in diagnostics, therapeutics, and personalized medicine.
3.Development of a nomogram-based risk prediction model for chronic obstructive pulmonary disease incidence in community-dwelling population aged 40 years and above in Shanghai
Yixuan ZHANG ; Yiling WU ; Jinxin ZANG ; Xuyan SU ; Xin YIN ; Jing LI ; Wei LUO ; Minjun YU ; Wei WANG ; Qi ZHAO ; Qin WANG ; Genming ZHAO ; Yonggen JIANG ; Na WANG
Shanghai Journal of Preventive Medicine 2025;37(8):669-675
ObjectiveTo develop a nomogram-based risk prediction model for chronic obstructive pulmonary disease (COPD) incidence among the community-dwelling population aged 40 years old and above, so as to provide targeted references for the screening and prevention of COPD. MethodsBased on a natural population cohort in suburban Shanghai, a total of 3 381 randomly selected participants aged ≥40 years underwent pulmonary function tests between July and October 2021. Cox stepwise regression analysis was used to develop overall and gender-specific risk prediction models, along with the construction of corresponding risk nomograms. Model predictive performance was evaluated using the C-indice, area under the curve (AUC) values, and Brier score. Stability was assessed through 10-fold cross-validation and sensitivity analysis. ResultsA total of 3 019 participants were included, with a median follow-up duration of 4.6 years. The COPD incidence density was 17.22 per 1 000 person-years, significantly higher in males (32.04/1 000 person-years) than that in females (7.38/1 000 person-years) (P<0.001). The overall risk prediction model included the variables such as gender, age, education level, BMI, smoking, passive smoking, and respiratory comorbidities. The male-specific model incorporated the variables such as age, BMI, respiratory comorbidities, and smoking, while the female-specific model included age, marital status, respiratory comorbidities, and pulmonary tuberculosis history. The C-indices for the overall, male-specific, and female-specific models were 0.829, 0.749, and 0.807, respectively. The 5-year AUC values were 0.785, 0.658, and 0.811, with Brier scores of 0.103, 0.176, and 0.059, respectively. Both 10-fold cross-validated C-indices and sensitivity analysis (excluding participants with a follow-up duration of <6 months) yielded C-indices were above 0.740. ConclusionThis study developed concise and practical overall and gender-specific COPD risk prediction models and corresponding nomograms. The models demonstrated robust performance in predicting COPD incidence, providing a valuable reference for identifying high-risk populations and formulating targeted screening and personalized management strategies.
4.Influence of network latency and bandwidth on robot-assisted laparoscopic telesurgery: A pre-clinical experiment.
Ye WANG ; Qing AI ; Taoping SHI ; Yu GAO ; Bin JIANG ; Wuyi ZHAO ; Chengjun JIANG ; Guojun LIU ; Lifeng ZHANG ; Huaikang LI ; Fan GAO ; Xin MA ; Hongzhao LI ; Xu ZHANG
Chinese Medical Journal 2025;138(3):325-331
BACKGROUND:
Telesurgery has the potential to overcome spatial limitations for surgeons, which depends on surgical robot and the quality of network communication. However, the influence of network latency and bandwidth on telesurgery is not well understood.
METHODS:
A telesurgery system capable of dynamically adjusting image compression ratios in response to bandwidth changes was established between Beijing and Sanya (Hainan province), covering a distance of 3000 km. In total, 108 animal operations, including 12 surgical procedures, were performed. Total latency ranging from 170 ms to 320 ms and bandwidth from 15-20 Mbps to less than 1 Mbps were explored using designed surgical tasks and hemostasis models for renal vein and internal iliac artery rupture bleeding. Network latency, jitter, frame loss, and bit rate code were systemically measured during these operations. National Aeronautics and Space Administration Task Load Index (NASA-TLX) and a self-designed scale measured the workload and subjective perception of surgeons.
RESULTS:
All 108 animal telesurgeries, conducted from January 2023 to June 2023, were performed effectively over a total duration of 3866 min. The operations were completed with latency up to 320 ms and bandwidths as low as 1-5 Mbps. Hemostasis for vein and artery rupture bleeding models was effectively achieved under these low bandwidth conditions. The NASA-TLX results indicated that latency significantly impacted surgical performance more than bandwidth and image clarity reductions.
CONCLUSIONS
This telesurgery system demonstrated safety and reliability. A total of 320 ms latency is acceptable for telesurgery operations. Reducing image clarity can effectively mitigate the potential latency increase caused by decreased bandwidth, offering a new method to reduce the impact of latency on telesurgery.
Animals
;
Robotic Surgical Procedures/methods*
;
Laparoscopy/methods*
5.Impact of early detection and management of emotional distress on length of stay in non-psychiatric inpatients: A retrospective hospital-based cohort study.
Wanjun GUO ; Huiyao WANG ; Wei DENG ; Zaiquan DONG ; Yang LIU ; Shanxia LUO ; Jianying YU ; Xia HUANG ; Yuezhu CHEN ; Jialu YE ; Jinping SONG ; Yan JIANG ; Dajiang LI ; Wen WANG ; Xin SUN ; Weihong KUANG ; Changjian QIU ; Nansheng CHENG ; Weimin LI ; Wei ZHANG ; Yansong LIU ; Zhen TANG ; Xiangdong DU ; Andrew J GREENSHAW ; Lan ZHANG ; Tao LI
Chinese Medical Journal 2025;138(22):2974-2983
BACKGROUND:
While emotional distress, encompassing anxiety and depression, has been associated with negative clinical outcomes, its impact across various clinical departments and general hospitals has been less explored. Previous studies with limited sample sizes have examined the effectiveness of specific treatments (e.g., antidepressants) rather than a systemic management strategy for outcome improvement in non-psychiatric inpatients. To enhance the understanding of the importance of addressing mental health care needs among non-psychiatric patients in general hospitals, this study retrospectively investigated the impacts of emotional distress and the effects of early detection and management of depression and anxiety on hospital length of stay (LOS) and rate of long LOS (LLOS, i.e., LOS >30 days) in a large sample of non-psychiatric inpatients.
METHODS:
This retrospective cohort study included 487,871 inpatients from 20 non-psychiatric departments of a general hospital. They were divided, according to whether they underwent a novel strategy to manage emotional distress which deployed the Huaxi Emotional Distress Index (HEI) for brief screening with grading psychological services (BS-GPS), into BS-GPS ( n = 178,883) and non-BS-GPS ( n = 308,988) cohorts. The LOS and rate of LLOS between the BS-GPS and non-BS-GPS cohorts and between subcohorts with and without clinically significant anxiety and/or depression (CSAD, i.e., HEI score ≥11 on admission to the hospital) in the BS-GPS cohort were compared using univariable analyses, multilevel analyses, and/or propensity score-matched analyses, respectively.
RESULTS:
The detection rate of CSAD in the BS-GPS cohort varied from 2.64% (95% confidence interval [CI]: 2.49%-2.81%) to 20.50% (95% CI: 19.43%-21.62%) across the 20 departments, with a average rate of 5.36%. Significant differences were observed in both the LOS and LLOS rates between the subcohorts with CSAD (12.7 days, 535/9590) and without CSAD (9.5 days, 3800/169,293) and between the BS-GPS (9.6 days, 4335/178,883) and non-BS-GPS (10.8 days, 11,483/308,988) cohorts. These differences remained significant after controlling for confounders using propensity score-matched comparisons. A multilevel analysis indicated that BS-GPS was negatively associated with both LOS and LLOS after controlling for sociodemographics and the departments of patient discharge and remained negatively associated with LLOS after controlling additionally for the year of patient discharge.
CONCLUSION
Emotional distress significantly prolonged the LOS and increased the LLOS of non-psychiatric inpatients across most departments and general hospitals. These impacts were moderated by the implementation of BS-GPS. Thus, BS-GPS has the potential as an effective, resource-saving strategy for enhancing mental health care and optimizing medical resources in general hospitals.
Humans
;
Retrospective Studies
;
Male
;
Length of Stay/statistics & numerical data*
;
Female
;
Middle Aged
;
Adult
;
Psychological Distress
;
Inpatients/psychology*
;
Aged
;
Anxiety/diagnosis*
;
Depression/diagnosis*
6.Two new protoberberine alkaloids from Stephania hernandifolia.
Wei-Hua DAI ; Xin-Tao CUI ; Yu-Jiao TU ; Lei JIANG ; Lin YUAN
China Journal of Chinese Materia Medica 2025;50(5):1231-1235
The 95% ethanol extract of Stephania hernandifolia was isolated and purified by column chromatography on silica gel and Sephadex LH-20, RP-18 medium-pressure liquid chromatography, and semi-preparative high performance liquid chromatography. The chemical structures of the compounds were identified by NMR and high-resolution mass spectrometry. Four alkaloids were isolated and identified as(-)-8-oxo-2,3,4,10,11-pentamethoxyberberine(1),(-)-8-oxo-11-hydroxy-2,3,4,10-tetramethoxyberberine(2), N-trans-feruloyl tyramine(3), and N-cis-feruloyl tyramine(4). Compounds 1 and 2 were new protoberberine alkaloids, while compounds 3 and 4 were amide alkaloids. All the four compounds were separated from this plant for the first time. The inhibitory activities of compounds 1, 3, and 4 against α-glycosidase were measured by the enzymatic reaction in vitro with 4-nitrophenyl-α-D-glucopyranoside(PNPG) as the substrate. Compounds 3 and 4 showed inhibitory activities against α-glucosidase, with median inhibition concentration(IC_(50)) values of(7.09±0.42) and(31.25±1.14) μmol·L~(-1), respectively.
Berberine Alkaloids/isolation & purification*
;
Stephania/chemistry*
;
Drugs, Chinese Herbal/isolation & purification*
;
Molecular Structure
;
alpha-Glucosidases/metabolism*
;
Chromatography, High Pressure Liquid
;
Alkaloids/isolation & purification*
7.Polysaccharide extract PCP1 from Polygonatum cyrtonema ameliorates cerebral ischemia-reperfusion injury in rats by inhibiting TLR4/NLRP3 pathway.
Xin ZHAN ; Zi-Xu LI ; Zhu YANG ; Jie YU ; Wen CAO ; Zhen-Dong WU ; Jiang-Ping WU ; Qiu-Yue LYU ; Hui CHE ; Guo-Dong WANG ; Jun HAN
China Journal of Chinese Materia Medica 2025;50(9):2450-2460
This study aims to investigate the protective effects and mechanisms of polysaccharide extract PCP1 from Polygonatum cyrtonema in ameliorating cerebral ischemia-reperfusion(I/R) injury in rats through modulation of the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. In vivo, SD rats were randomly divided into the sham group, model group, PCP1 group, nimodipine(NMDP) group, and TLR4 signaling inhibitor(TAK-242) group. A middle cerebral artery occlusion/reperfusion(MCAO/R) model was established, and neurological deficit scores and infarct size were evaluated 24 hours after reperfusion. Hematoxylin-eosin(HE) and Nissl staining were used to observe pathological changes in ischemic brain tissue. Transmission electron microscopy(TEM) assessed ultrastructural damage in cortical neurons. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and nitric oxide(NO) in serum. Immunofluorescence was used to analyze the expression of TLR4 and NLRP3 proteins. In vitro, a BV2 microglial cell oxygen-glucose deprivation/reperfusion(OGD/R) model was established, and cells were divided into the control, OGD/R, PCP1, TAK-242, and PCP1 + TLR4 activator lipopolysaccharide(LPS) groups. The CCK-8 assay evaluated BV2 cell viability, and ELISA determined NO release. Western blot was used to analyze the expression of TLR4, NLRP3, and downstream pathway-related proteins. The results indicated that, compared with the model group, PCP1 significantly reduced neurological deficit scores, infarct size, ischemic tissue pathology, cortical cell damage, and the levels of inflammatory factors IL-1β, IL-6, IL-18, TNF-α, and NO(P<0.01). It also elevated IL-10 levels(P<0.01) and decreased the expression of TLR4 and NLRP3 proteins(P<0.05, P<0.01). Moreover, in vitro results showed that, compared with the OGD/R group, PCP1 significantly improved BV2 cell viability(P<0.05, P<0.01), reduced cell NO levels induced by OGD/R(P<0.01), and inhibited the expression of TLR4-related inflammatory pathway proteins, including TLR4, myeloid differentiation factor 88(MyD88), tumor necrosis factor receptor-associated factor 6(TRAF6), phosphorylated nuclear factor-kappaB dimer RelA(p-p65)/nuclear factor-kappaB dimer RelA(p65), NLRP3, cleaved-caspase-1, apoptosis-associated speck-like protein(ASC), GSDMD-N, IL-1β, and IL-18(P<0.05, P<0.01). The protective effects of PCP1 were reversed by LPS stimulation. In conclusion, PCP1 ameliorates cerebral I/R injury by modulating the TLR4/NLRP3 signaling pathway, exerting anti-inflammatory and anti-pyroptotic effects.
Animals
;
Toll-Like Receptor 4/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Reperfusion Injury/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Polysaccharides/isolation & purification*
;
Polygonatum/chemistry*
;
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Humans
8.Common detoxification mechanisms in processing of toxic medicinal herbs of the same genus: a case study of Euphorbia pekinensis, E. ebracteolata, and E. fischeriana.
En-Ci JIANG ; Hong-Li YU ; Shu-Rui ZHANG ; Bing-Bing LIU ; Xin-Zhi WANG ; Hao WU
China Journal of Chinese Materia Medica 2025;50(13):3615-3675
Traditional Chinese medicine(TCM) processing is a specialized pharmaceutical technique with the primary objective of reducing the toxicity of medicinal substances. Euphorbia pekinensis, E. ebracteolata, and E. fischeriana, all belonging to Euphorbiaceae, are classified as drastic purgative herbs, traditionally used for eliminating retained water, reducing swelling, resolving toxicity, and dispersing masses. However, these herbs are also associated with adverse effects such as abdominal pain and diarrhea. Accordingly, they are commonly processed with vinegar, milk, or Terminalia chebula decoction to reduce the toxicity. This review summarizes the chemical constituents, pharmacological activities, historical evolution of processing methods, and detoxification mechanisms of the three toxic Euphorbia species. The primary toxic constituents are terpenoids. Specifically, E. ebracteolata and E. fischeriana are rich in diterpenoids, while E. pekinensis contains diterpenoids, triterpenoids, and sesquiterpenoids. Studies have shown that vinegar processing promotes structural transformations of diterpenoids, including ether bond hydrolysis, lactone ring opening, esterification, oxidation, and epoxide ring cleavage, thereby reducing the content and toxicity of these compounds. Milk processing facilitates the dissolution of toxic components into the residual liquid of excipients, leading to decreases in their concentrations in the final decoction pieces. Processing with T. chebula decoction raises the levels of tannin-derived phenolic acids, which antagonize the adverse effects of the intestine. These findings reveal a shared detoxification pattern among the three toxic herbs. Accordingly, this review proposes the concept of a shared detoxification mechanism for toxic herbs belonging to the same family or genus. That is, toxic herbs belonging to the same taxon often exhibit similar toxicological profiles and can undergo detoxification through the same processing methods, reflecting common underlying mechanisms. Investigating such shared mechanisms across multiple species of the same genus offers a promising research strategy. Ultimately, the research into processing-induced detoxification mechanisms provides both theoretical and practical support for ensuring the safety of toxic TCM.
Euphorbia/classification*
;
Drugs, Chinese Herbal/metabolism*
;
Humans
;
Animals
;
Inactivation, Metabolic
;
Medicine, Chinese Traditional
9.Progress in R&D and key issues in industrial advancement of Cistanches Herba products.
Shuo YUAN ; Yu-Ling XIAO ; Jia-Xu SUN ; Jun LEI ; Jia-Xin HONG ; Peng-Fei TU ; Yong JIANG
China Journal of Chinese Materia Medica 2025;50(13):3815-3840
Cistanches Herba(CH) is a famous tonic traditional Chinese medicine, with the effects of tonifying kidney Yang, nourishing kidney Yin, replenishing essence and blood, and moistening the intestines to relieve constipation. Modern pharmacological studies have shown that CH has anti-aging, anti-fatigue, immunomodulatory, neuroprotective, and anti-aging activities, serving as an ideal raw material for the development of pharmaceuticals and health products. In 2023, CH was added in the catalog of medicinal and food substances, which provided policy support for its application in conventional food products and expanding pathways for industrial diversification. To comprehensively understand current development status of CH products, this review systematically investigated professional databases including Yaozhi(https://db.yaozh.com), Chinese Pharmacopoeia, Compendium of National Standards for Chinese Patent Medicines, and Kezhuang and collected market survey data to thoroughly review the applications of CH as a primary ingredient in domestic and international Chinese patent medicines, health foods, cosmetics, and common food products. Furthermore, this review points out challenges in the current industrial development and future potential market prospects, aiming to provide guidance for the development and industrialization of CH-based pharmaceuticals and health products, thereby promoting the vigorous growth of the CH industry.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Cistanche/chemistry*
;
Animals
;
Medicine, Chinese Traditional
10.Prediction of immunotherapy targets for chronic cerebral hypoperfusion by bioinformatics method.
Mei ZHAO ; Yanpeng XUE ; Qingqing TIAN ; He YANG ; Qing JIANG ; Mengfan YU ; Xin CHEN
Journal of Biomedical Engineering 2025;42(2):382-388
Chronic cerebral hypoperfusion (CCH) plays an important role in the occurrence and development of vascular dementia (VD). Recent studies have indicated that multiple stages of immune-inflammatory response are involved in the process of cerebral ischemia, drawing increasing attention to immune therapies for cerebral ischemia. This study aims to identify potential immune therapeutic targets for CCH using bioinformatics methods from an immunological perspective. We identified a total of 823 differentially expressed genes associated with CCH, and further screened for 9 core immune-related genes, namely RASGRP1, FGF12, SEMA7A, PAK6, EDN3, BPHL, FCGRT, HSPA1B and MLNR. Gene enrichment analysis showed that core genes were mainly involved in biological functions such as cell growth, neural projection extension, and mesenchymal stem cell migration. Biological signaling pathway analysis indicated that core genes were mainly involved in the regulation of T cell receptor, Ras and MAPK signaling pathways. Through LASSO regression, we identified RASGRP1 and BPHL as key immune-related core genes. Additionally, by integrating differential miRNAs and the miRwalk database, we identified miR-216b-5p as a key immune-related miRNA that regulates RASGRP1. In summary, the predicted miR-216b-5p/ RASGRP1 signaling pathway plays a significant role in immune regulation during CCH, which may provide new targets for immune therapy in CCH.
Humans
;
Computational Biology/methods*
;
Brain Ischemia/therapy*
;
Immunotherapy
;
MicroRNAs/genetics*
;
Signal Transduction
;
Dementia, Vascular/genetics*
;
Chronic Disease

Result Analysis
Print
Save
E-mail