1.Research progress on strategies to target intestinal microbiota to improve drug resistance in tumor immunotherapy
Hui-ling LI ; Bi-qing LIU ; Ying-nan FENG ; Xin HU ; Lan ZHANG ; Xian-zhe DONG
Acta Pharmaceutica Sinica 2025;60(2):260-268
A growing body of research points out that gut microbiota plays a key role in tumor immunotherapy. By optimizing the composition of intestinal microbiota, it is possible to effectively improve immunotherapy resistance and enhance its therapeutic effect. This article comprehensively analyzes the mechanism of intestinal microbiota influencing tumor immunotherapy resistance, expounds the current strategies for targeted regulation of intestinal microbiota, such as traditional Chinese medicine and plant components, fecal microbiota transplantation, probiotics, prebiotics and dietary therapy, and explores the potential mechanisms of these strategies to improve patients' resistance to tumor immunotherapy. At the same time, the article also briefly discusses the prospects and challenges of targeting intestinal microbiota to improve tumor immunotherapy resistance, which provides a reference for related research to help the strategy research of reversing tumor immunotherapy resistance.
2.Visual feature extraction combining dissolution testing for the study of drug release behavior of gliclazide modified release tablets
Si-yu CHEN ; Ze-ya LI ; Ping LI ; Xin-qing ZHAO ; Tao GONG ; Li DENG ; Zhi-rong ZHANG
Acta Pharmaceutica Sinica 2025;60(1):225-231
Oral solid dosage forms require processes such as disintegration and dissolution to release the drug before it can be absorbed and utilized by the body. In this manuscript, imaging technology was used to continuously visualize and characterize the
3.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
4.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
5.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
6.Junctophilin-2 MORN-Helix Domain: Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
Jing-Xin WANG ; Zhi-Wei LI ; Wei LIU ; Wen-Qing ZHANG ; Jian-Chao LI
Progress in Biochemistry and Biophysics 2025;52(8):2103-2116
ObjectiveJunctophilin-2 (JPH2) is an essential structural protein that maintains junctional membrane complexes (JMCs) in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum, thereby facilitating excitation-contraction (E-C) coupling. Mutations in JPH2 have been associated with hypertrophic cardiomyopathy (HCM), but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus (MORN) repeat motifs remain incompletely understood. This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis. MethodsA recombinant N-terminal fragment of mouse JPH2 (residues1-440), encompassing the MORN repeats and an adjacent helical region, was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain. Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features. Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells. In addition, site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations, including R347C, was used to evaluate their effects on membrane interaction and subcellular localization. ResultsThe crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6 Å, revealing a compact, elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration, forming a continuous hydrophobic core stabilized by alternating aromatic residues. A C-terminal α-helix further reinforced structural integrity. Conservation analysis identified the inner groove of the MORN array as a highly conserved surface, suggesting its role as a protein-binding interface. A flexible linker segment enriched in positively charged residues, located adjacent to the MORN motifs, was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes. Functional assays demonstrated that mutation of these basic residues impaired membrane association, while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays, despite preserving the overall MORN-Helix fold in structural modeling. ConclusionThis study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2, highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions. The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis. These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.
7.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
8.Influence of network latency and bandwidth on robot-assisted laparoscopic telesurgery: A pre-clinical experiment.
Ye WANG ; Qing AI ; Taoping SHI ; Yu GAO ; Bin JIANG ; Wuyi ZHAO ; Chengjun JIANG ; Guojun LIU ; Lifeng ZHANG ; Huaikang LI ; Fan GAO ; Xin MA ; Hongzhao LI ; Xu ZHANG
Chinese Medical Journal 2025;138(3):325-331
BACKGROUND:
Telesurgery has the potential to overcome spatial limitations for surgeons, which depends on surgical robot and the quality of network communication. However, the influence of network latency and bandwidth on telesurgery is not well understood.
METHODS:
A telesurgery system capable of dynamically adjusting image compression ratios in response to bandwidth changes was established between Beijing and Sanya (Hainan province), covering a distance of 3000 km. In total, 108 animal operations, including 12 surgical procedures, were performed. Total latency ranging from 170 ms to 320 ms and bandwidth from 15-20 Mbps to less than 1 Mbps were explored using designed surgical tasks and hemostasis models for renal vein and internal iliac artery rupture bleeding. Network latency, jitter, frame loss, and bit rate code were systemically measured during these operations. National Aeronautics and Space Administration Task Load Index (NASA-TLX) and a self-designed scale measured the workload and subjective perception of surgeons.
RESULTS:
All 108 animal telesurgeries, conducted from January 2023 to June 2023, were performed effectively over a total duration of 3866 min. The operations were completed with latency up to 320 ms and bandwidths as low as 1-5 Mbps. Hemostasis for vein and artery rupture bleeding models was effectively achieved under these low bandwidth conditions. The NASA-TLX results indicated that latency significantly impacted surgical performance more than bandwidth and image clarity reductions.
CONCLUSIONS
This telesurgery system demonstrated safety and reliability. A total of 320 ms latency is acceptable for telesurgery operations. Reducing image clarity can effectively mitigate the potential latency increase caused by decreased bandwidth, offering a new method to reduce the impact of latency on telesurgery.
Animals
;
Robotic Surgical Procedures/methods*
;
Laparoscopy/methods*
9.Exploration of pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in treatment of gouty arthritis based on UPLC-Q-Exactive Orbitrap-MS technology and network pharmacology.
Yan XIAO ; Ting ZHANG ; Ying-Jie ZHANG ; Bin HUANG ; Peng CHEN ; Xiao-Hua CHEN ; Ming-Qing HUANG ; Xue-Ting CHEN ; You-Xin SU ; Jie-Mei GUO
China Journal of Chinese Materia Medica 2025;50(2):444-488
Based on ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology and network pharmacology, this study explored the pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in the treatment of gouty arthritis(GA). UPLC-Q-Exactive Orbitrap-MS technology was used to identify the components in Huazhuo Sanjie Chubi Decoction, and the qualitative analysis of its active ingredients was carried out, with a total of 184 active ingredients identified. A total of 897 active ingredient targets were screened through the PharmMapper database, and 491 GA-related disease targets were obtained from the OMIM, GeneCards, CTD databases. After Venn analysis, 60 intersecting targets were obtained. The component target-GA target network was constructed through the Cytoscape platform, and the STRING database was used to construct a protein-protein interaction network, with 16 core targets screened. The core targets were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses, and the component-target-pathway network was constructed. It was found that the main active ingredients of the formula for the treatment of GA were phenols, flavonoids, alkaloids, and terpenoids, and the key targets were SRC, MMP3, MMP9, REN, ALB, IGF1R, PPARG, MAPK1, HPRT1, and CASP1. Through GO analysis, it was found that the treatment of GA mainly involved biological processes such as lipid response, bacterial response, and biostimulus response. KEGG analysis showed that the pathways related to the treatment of GA included lipids and atherosclerosis, neutrophil extracellular traps(NETs), IL-17, and so on. In summary, phenols, flavonoids, alkaloids, and terpenoids may be the core pharmacodynamic substances of Huazhuo Sanjie Chubi Decoction in the treatment of GA, and the pharmacodynamic mechanism may be related to SRC, MMP3, MMP9, and other targets, as well as lipids and atherosclerosis, NETs, IL-17, and other pathways.
Drugs, Chinese Herbal/therapeutic use*
;
Network Pharmacology
;
Arthritis, Gouty/metabolism*
;
Chromatography, High Pressure Liquid/methods*
;
Humans
;
Mass Spectrometry/methods*
;
Protein Interaction Maps/drug effects*
10.Pharmacokinetics study of Dayuanyin in normal and febrile rats.
Yu-Jie HOU ; Kang-Ning XIAO ; Jian-Yun BI ; Xin-Jun ZHANG ; Xin-Rui LI ; Yu-Qing WANG ; Ming SU ; Xin-Ru SUN ; Hui ZHANG ; Bo-Yang WANG ; Li-Jie WANG ; Shan-Xin LIU
China Journal of Chinese Materia Medica 2025;50(2):527-533
Based on the pharmacokinetics theory, this study investigated the pharmacokinetic characteristics of albiflorin, paeoniflorin, wogonoside, and wogonin in normal and febrile rats and summarized absorption and elimination rules of Dayuanyin in them to provide reference for further development and clinical application of Dayuanyin. Blood samples were taken from the fundus venous plexus of normal and model rats after intragastric administration of Dayuanyin at different time points. The concentration of each substance in blood was determined by ultra performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS) technique at different time points. DAS 2.0, a piece of pharmacokinetics software, was used to calculate the pharmacokinetic parameters of each component. The results show that the 4 components had good linear relationship in their respective ranges, and the results of methodological investigation met the requirements. The pharmacokinetic parameters of C_(max), T_(max), t_(1/2), AUC_(0-t), AUC_(0-∞), and MRT_(0-t) were calculated by the DAS 2.0 non-compartmental model. Compared with those in the normal group, C_(max) and AUC_(0-t) of the 4 components in the model group were significantly increased. There were significant differences in the pharmacokinetic characteristics between the normal and model groups, suggesting that the absorption and elimination of Dayuanyin may be affected by the changes of internal environment of the body in different physiological states.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Fever/metabolism*
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Glucosides/pharmacokinetics*
;
Monoterpenes

Result Analysis
Print
Save
E-mail