1.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
2.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
3.Setup Error and Its Influencing Factors in Radiotherapy for Spinal Metastasis
Wenhua QIN ; Xin FENG ; Zengzhou WANG ; Shangnan CHU ; Hong WANG ; Shiyu WU ; Cheng CHEN ; Fukui HUAN ; Bin LIANG ; Tao ZHANG
Cancer Research on Prevention and Treatment 2025;52(5):400-404
Objective To investigate the setup error in patients with spinal bone metastasis who underwent radiotherapy under the guidance of kilovoltage cone-beam CT (KV-CBCT). Methods A total of 118 patients with spinal metastasis who underwent radiotherapy, including 17 cases of cervical spine, 62 cases of thoracic spine, and 39 cases of lumbar spine, were collected. KV-CBCT scans were performed using the linear accelerators from Elekta and Varian’s EDGE system. CBCT images were registered with reference CT images in the bone window mode. A total of 973 data were collected, and 3D linear errors were recorded. Results The patients with spinal bone metastasis were grouped by site, height, weight, and BMI. The P value of the patients grouped only by site was P<0.05, which was statistically significant. Conclusion When grouped by site in the 3D direction, the positioning effect of cervical spine is better than that of thoracic and lumbar spine. The positioning effect of the thoracic spine is better in the head and foot direction but worse in the left and right direction compared with that of the lumbar spine. Instead of extending or narrowing the margin according to the BMI of patients with spinal metastasis, the margin must be changed according to the site of spinal bone metastasis.
4.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
5.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
6.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
7.Genetic characterization of varicella-zoster virus in Jilin province from 2010 to 2023
Xiang LI ; Leilei WEI ; Biao HUANG ; Tao CHENG ; Yuanchun SHAN ; Guixiang QIN ; Hongyan SUN ; Shangwei JI ; Xin TIAN ; Simei FU ; Shuang WANG
Chinese Journal of Experimental and Clinical Virology 2024;38(5):521-526
Objective:This study aimed to analyze the genomic characteristics of Varicella-Zoster Virus (VZV) strains circulating in Jilin province from 2010 to 2023.Methods:Vesicle fluid from 78 sporadic cases with VZV infection were collected in Jilin province from 2010 to 2023, after detecting by Real-time PCR, 26 specimens (CT<25) were detected by PCR. Open reading frame 22(ORF22), ORF38 and ORF62 were amplified and analyzed. Genotyping was confirmed by SNPs ORF22 (37902, 38019, 38055, 38081 and 38177) and ORF38 (69424). Vaccine strains were indentified from wild-type strains according to ORF38 (69349) and ORF62 (106262, 107252, and 108111). Sequences were analyzed by homologous comparison and phylogenetic analysis.Results:The comparison with Dumas sequence revealed that SNPs (37902, 38055, 38081 and 38177) in ORF22 and ORF38 (69424) have mutations similar to the pOka strain, which belong to clade 2. Compared to the Dumas and Baike strains, all 26 samples were wild-type strains. JL2016-4 strain changes from threonine to asparaginyl at position 38059, JL2021-4 strain changes from arginine to proline at position 37933, from aspartic acid to tyrosine at position 37935, and from aspartic acid at base 38031 to tyrosine. JL2023-1 strain changes from arginine to leucine at position 37933.Conclusions:VZV has been prevalent for 14 years in Jilin province. The main epidemic strains belong to the clade 2. We should strengthen the monitoring of VZV outbreaks and raise the coverage rate of VZV vaccination.
8.Expert consensus on difficulty assessment of endodontic therapy
Huang DINGMING ; Wang XIAOYAN ; Liang JINGPING ; Ling JUNQI ; Bian ZHUAN ; Yu QING ; Hou BENXIANG ; Chen XINMEI ; Li JIYAO ; Ye LING ; Cheng LEI ; Xu XIN ; Hu TAO ; Wu HONGKUN ; Guo BIN ; Su QIN ; Chen ZHI ; Qiu LIHONG ; Chen WENXIA ; Wei XI ; Huang ZHENGWEI ; Yu JINHUA ; Lin ZHENGMEI ; Zhang QI ; Yang DEQIN ; Zhao JIN ; Pan SHUANG ; Yang JIAN ; Wu JIAYUAN ; Pan YIHUAI ; Xie XIAOLI ; Deng SHULI ; Huang XIAOJING ; Zhang LAN ; Yue LIN ; Zhou XUEDONG
International Journal of Oral Science 2024;16(1):15-25
Endodontic diseases are a kind of chronic infectious oral disease.Common endodontic treatment concepts are based on the removal of inflamed or necrotic pulp tissue and the replacement by gutta-percha.However,it is very essential for endodontic treatment to debride the root canal system and prevent the root canal system from bacterial reinfection after root canal therapy(RCT).Recent research,encompassing bacterial etiology and advanced imaging techniques,contributes to our understanding of the root canal system's anatomy intricacies and the technique sensitivity of RCT.Success in RCT hinges on factors like patients,infection severity,root canal anatomy,and treatment techniques.Therefore,improving disease management is a key issue to combat endodontic diseases and cure periapical lesions.The clinical difficulty assessment system of RCT is established based on patient conditions,tooth conditions,root canal configuration,and root canal needing retreatment,and emphasizes pre-treatment risk assessment for optimal outcomes.The findings suggest that the presence of risk factors may correlate with the challenge of achieving the high standard required for RCT.These insights contribute not only to improve education but also aid practitioners in treatment planning and referral decision-making within the field of endodontics.
9.Lipopolysaccharide regulates neutrophil inflammation through activating the LRG1/ROCK1 signaling
Qiao FENG ; Xin HAN ; Bohui YUAN ; Xuejiao ZHANG ; Hui HUA ; Wanpeng CHENG ; Suping QIN ; Feng ZHOU ; Xiaomei LIU
Journal of Xi'an Jiaotong University(Medical Sciences) 2024;45(4):597-602
Objective To investigate the role of lipopolysaccharide(LPS)in regulating the inflammatory response of neutrophil through the leucine-rich α-2 glycoprotein 1(LRG1)/Rho-associated protein kinase(ROCK1)signaling.Methods HL-60 cells were treated with 1 μmol/L all-trans retinoic acid(ATRA)and 12.5 μL/mL dimethyl sulfoxide(DMSO)for 72 h and 96 h,and the morphological changes were observed by Wright-Giemsa staining.The expression of CD11b was detected by flow cytometry.LPS induced the activation of dHL-60 and human peripheral blood neutrophils.The transcription and secretion levels of LRG1,ROCK1 and inflammatory cytokines were detected by qPCR and ELISA,respectively.The expression levels of LRG1 and ROCK1 after the activation of dHL-60 were detected by Western blotting.Furthermore,dHL-60 was treated with the recombinant protein LRG1 and ROCK1 inhibitor Y-27632;the transcription levels of inflammatory cytokines were detected by qPCR.Results Neutrophils were activated by LPS.The expression levels of LRG1 and ROCK1 were significantly increased,and the transcription levels of inflammatory cytokines were significantly increased.The recombinant protein LRG1 activated dHL-60 in vitro,and the transcription levels of ROCK1 and inflammatory cytokines were significantly increased.Using the ROCK1 inhibitor Y-27632,the production levels of inflammatory cytokines were significantly reduced.Conclusion LPS can regulate the production levels of neutrophil inflammatory cytokines through activating the LRG1/ROCK1 signaling,thus exacerbating the inflammatory response.
10.Three 2,3-diketoquinoxaline alkaloids with hepatoprotective activity from Heterosmilax yunnanensis
Rong-rong DU ; Xin-yi GUO ; Wen-jie QIN ; Hua SUN ; Xiu-mei DUAN ; Xiang YUAN ; Ya-nan YANG ; Kun LI ; Pei-cheng ZHANG
Acta Pharmaceutica Sinica 2024;59(2):413-417
Three 2,3-diketoquinoxaline alkaloids were isolated from

Result Analysis
Print
Save
E-mail