1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Mass Spectrometry-based Cell Imaging
Peng ZHOU ; Xin WANG ; Qian LUO ; Chao ZHAO
Progress in Biochemistry and Biophysics 2025;52(4):858-868
Cell models can simulate a variety of life states and disease developments, including single cells, two-dimensional (2D) cell cultures, three-dimensional (3D) multicellular spheroids, and organoids. They are essential tools for addressing complex biochemical questions. With continuous advancements in biological and cellular analysis technologies, in vitro cellular models designed to answer scientific questions have evolved rapidly. Early in vitro models primarily relied on 2D systems, which failed to accurately replicate the complex cellular compositions and microenvironmental interactions observed in vivo, let alone support sophisticated investigations into cellular biological functions. Subsequent improvements in cell culture techniques led to the development of 3D culture-based models, such as cellular spheroids. The advent of pluripotent stem cell technology further advanced the development of organoid systems, which closely mimic human organ development. Compared to traditional 2D models, both 3D cellular models and organoids offer significant advantages, including personalization and enhanced physiological relevance, making them particularly suitable for exploring molecular mechanisms of disease progression, discovering novel cellular and biomolecular functions, and conducting related studies. The imaging analysis of common cellular models primarily employs labeling-based methods for in situ imaging of targeted genes, proteins, and small-molecule metabolites, enabling further research on cell types, states, metabolism, and drug efficacy. However, these approaches have drawbacks such as poor labeling specificity and complex experimental procedures. By using cells as experimental models, mass spectrometry technology combined with morphological analysis can reveal quantitative changes and spatial distributions of various biological substances at the spatiotemporal level, including metabolites, proteins, lipids, peptides, drugs, environmental pollutants, and metals. This allows for the investigation of cell-cell interactions, tumor microenvironments, and cellular bioinformational heterogeneity. The application of these cutting-edge imaging technologies generates vast amounts of cellular data, necessitating the development of rapid, efficient, and highly accurate image data algorithms for precise segmentation and identification of single cells, multi-organelle structures, rare cell subpopulations, and complex cellular morphologies. A critical focus lies in creating deep learning models and algorithms that enhance the accuracy of cellular visualization. At the same time, establishing more robust data integration tools is essential not only for analyzing and interpreting outputs but also for effectively uncovering the biological significance of spatially resolved mass spectrometry data. Developing a cell imaging platform with high versatility, operational stability, and specificity to enable data interoperability will significantly enhance its utility in clinical research, thereby advancing investigations into disease molecular mechanisms and supporting precision diagnostics and therapeutics. In contrast to genomic, transcriptomic, and proteomic information, the metabolome can rapidly respond to external stimuli and cellular physiological changes within a short timeframe. This rapid and precise reflection of ongoing cellular state alterations has positioned spatial metabolomics as a pivotal approach for exploring the molecular mechanisms underlying physiological and pathological processes in cells, tissues, and organisms. In this review, we summarize research on cell imaging based on mass spectrometry technologies, including the selection and preparation of cell models, morphological analysis of cell models, spatial omics techniques based on mass spectrometry, mass cytometry, and their applications. We also discuss the current challenges and propose future directions for development in this field.
3.Clinical and Mechanistic Study of Modified Sinisan in Treating Precancerous Lesions of Digestive System Based on "Inflammation-to-Cancer Transformation"
Xuhang SUN ; Dandan WEI ; Xin PENG ; Shanshan LI ; Yihan ZHAO ; Fuke YAO ; Shiqing JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):221-234
Tumorigenesis, invasion, and metastasis occur in the context of a persistent inflammatory microenvironment, and a variety of inflammatory factors can lead to the development of various tumors. Guided by the thought of "preventive treatment of disease" in TCM and the concept of tertiary prevention in modern medicine, it is of great significance to effectively intervene in the inflammatory stage of the disease, interrupt disease progression, prevent the occurrence of malignant tumors, and reverse the process of "inflammation-to-cancer transformation". Sinisan, a commonly used prescription in the Treatise on Febrile Diseases, has been widely applied in the treatment of precancerous lesions of the digestive system, demonstrating considerable advantages. This article reviewed literature from the past 20 years, summarizing the application of Sinisan in precancerous lesions of the digestive system from three aspects: the exploration of its prescription-syndrome relationship, clinical application, and mechanistic study. It is found that basic syndrome indications of Sinisan include harmonizing the Earth element to promote spleen-stomach transportation and transformation, soothing the liver and nourishing the Wood element to restore the smooth flow of Qi, and regulating Yin and Yang to relieve stagnation within the system. In clinical application, Sinisan has shown significant efficacy in atrophic gastritis and precancerous conditions such as intestinal metaplasia, gastric ulcer, ulcerative colitis, esophagitis, and pancreatitis. Mechanistic studies have revealed that Sinisan can inhibit inflammatory factors and improve the inflammatory microenvironment, inhibit cell proliferation and regulate apoptosis, exhibit anti-angiogenic and antitumorigenic effects, modulate immune function, and exert antioxidant effects. These mechanisms can be achieved by regulating pathways such as nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1), farnesoid X receptor (FXR)/Nrf2, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), Takeda G protein-coupled receptor 5/cyclic adenosine monophosphate/protein kinase A (TGR5/cAMP/PKA), interleukin-4/signal transducer and activator of transcription 6 (IL-4/STAT6), Janus kinase/signal transducer and activator of transcription (JAK/STAT), RhoA/Rho-associated protein kinase (RhoA/ROCK), and transforming growth factor-β/Smad proteins (TGF-β/Smads), confirming Sinisan's role in reversing the inflammation-to-cancer transformation. The current research status of Sinisan in precancerous lesions of the digestive system was thoroughly examined through the above three aspects, along with the identification of limitations and areas for improvement in current research. The aim is to provide a basis and support for future in-depth research on Sinisan, promote the development of new integrated treatment models combining TCM and Western medicine for precancerous lesions, and aid in the research and development of drugs related to precancerous lesions.
4.Autonomous drug delivery and scar microenvironment remodeling using micromotor-driven microneedles for hypertrophic scars therapy.
Ting WEN ; Yanping FU ; Xiangting YI ; Ying SUN ; Wanchen ZHAO ; Chaonan SHI ; Ziyao CHANG ; Beibei YANG ; Shuling LI ; Chao LU ; Tingting PENG ; Chuanbin WU ; Xin PAN ; Guilan QUAN
Acta Pharmaceutica Sinica B 2025;15(7):3738-3755
Hypertrophic scar is a fibrous hyperplastic disorder that arises from skin injuries. The current therapeutic modalities are constrained by the dense and rigid scar tissue which impedes effective drug delivery. Additionally, insufficient autophagic activity in fibroblasts hinders their apoptosis, leading to excessive matrix deposition. Here, we developed an active microneedle (MN) system to overcome these challenges by integrating micromotor-driven drug delivery with autophagy regulation to remodel the scar microenvironment. Specifically, sodium bicarbonate and citric acid were introduced into the MNs as a built-in engine to generate CO2 bubbles, thereby enabling enhanced lateral and vertical drug diffusion into dense scar tissue. The system concurrently encapsulated curcumin (Cur), an autophagy activator, and triamcinolone acetonide (TA), synergistically inducing fibroblast apoptosis by upregulating autophagic activity. In vitro studies demonstrated that active MNs achieved efficient drug penetration within isolated scar tissue. The rabbit hypertrophic scar model revealed that TA-Cur MNs significantly reduced the scar elevation index, suppressed collagen I and transforming growth factor-β1 (TGF-β1) expression, and elevated LC3 protein levels. These findings highlight the potential of the active MN system as an efficacious platform for autonomous augmented drug delivery and autophagy-targeted therapy in fibrotic disorder treatments.
5.Cryo-EM structures of Nipah virus polymerase complex reveal highly varied interactions between L and P proteins among paramyxoviruses.
Lu XUE ; Tiancai CHANG ; Jiacheng GUI ; Zimu LI ; Heyu ZHAO ; Binqian ZOU ; Junnan LU ; Mei LI ; Xin WEN ; Shenghua GAO ; Peng ZHAN ; Lijun RONG ; Liqiang FENG ; Peng GONG ; Jun HE ; Xinwen CHEN ; Xiaoli XIONG
Protein & Cell 2025;16(8):705-723
Nipah virus (NiV) and related viruses form a distinct henipavirus genus within the Paramyxoviridae family. NiV continues to spillover into the humans causing deadly outbreaks with increasing human-bat interaction. NiV encodes the large protein (L) and phosphoprotein (P) to form the viral RNA polymerase machinery. Their sequences show limited homologies to those of non-henipavirus paramyxoviruses. We report two cryo-electron microscopy (cryo-EM) structures of the Nipah virus (NiV) polymerase L-P complex, expressed and purified in either its full-length or truncated form. The structures resolve the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyl transferase (PRNTase) domains of the L protein, as well as a tetrameric P protein bundle bound to the L-RdRp domain. L-protein C-terminal regions are unresolved, indicating flexibility. Two PRNTase domain zinc-binding sites, conserved in most Mononegavirales, are confirmed essential for NiV polymerase activity. The structures further reveal anchoring of the P protein bundle and P protein X domain (XD) linkers on L, via an interaction pattern distinct among Paramyxoviridae. These interactions facilitate binding of a P protein XD linker in the nucleotide entry channel and distinct positioning of other XD linkers. We show that the disruption of the L-P interactions reduces NiV polymerase activity. The reported structures should facilitate rational antiviral-drug discovery and provide a guide for the functional study of NiV polymerase.
Nipah Virus/chemistry*
;
Cryoelectron Microscopy
;
Viral Proteins/genetics*
;
RNA-Dependent RNA Polymerase/genetics*
;
Phosphoproteins/genetics*
;
Humans
;
Models, Molecular
;
Protein Binding
6.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
7.Cross-Sectional Analysis of the Relationship Between Bedtime Procrastination and Fear of Missing Out and the Effect of Exercise Intervention.
Jun-Ge PENG ; Meng-Ying ZHANG ; Jiang XIAO ; Kai-Xin LI ; Yue ZHAO ; Yan LI
Acta Academiae Medicinae Sinicae 2025;47(2):175-181
Objective To explore the relationship between bedtime procrastination and fear of missing out and the intervention effect of aerobic exercise on bedtime procrastination,so as to provide a theoretical basis and practical reference for remedying bedtime procrastination.Methods Totally 988 students were selected through random sampling and then surveyed with the bedtime procrastination scale and the fear of missing out scale.Correlation and regression analyses were performed to explore the relationship between bedtime procrastination and fear of missing out.A total of 36 students were recruited from the 988 students to participate in the exercise intervention and they were assigned into an exercise group and a control group by the random number table method,with 18 students in each group.The exercise group performed aerobic exercise for 12 weeks,while the control group maintained daily activities.The participants' scores on the bedtime procrastination scale and the fear of missing out scale were recorded before and after the intervention and compared.Results The fear of missing out was positively correlated with bedtime procrastination among college students(r=0.214,P<0.001),and it was an important predictive factor for bedtime procrastination(β=0.241,P<0.001).After the intervention,the scores of bedtime procrastination scale decreased in the exercise group(t=2.277,P=0.036),while there was no significant difference in the scores of the control group before and after intervention(t=-0.787,P=0.442).Conclusions A high level of fear of missing out indicates severe bedtime procrastination.And 12-week exercise intervention could remedy bedtime procrastination.
Humans
;
Fear
;
Exercise
;
Male
;
Female
;
Procrastination
;
Young Adult
;
Cross-Sectional Studies
;
Students/psychology*
;
Adult
;
Surveys and Questionnaires
;
Adolescent
8.Improvement effects of 3,5,6,7,8,3′,4′-heptamethoxyflavone of Fructus Aurantii on rats with damp blockage of the middle energizer
Wenhui GONG ; Yating XIE ; Li XIN ; Shihao YAN ; Beibei ZHAO ; Yuqing ZHENG ; Jingying GUO ; Jie SHANG ; Peng ZHENG ; Jinlian ZHANG
China Pharmacy 2024;35(7):819-824
OBJECTIVE To investigate the improvement effects of 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF) of Fructus Aurantii on rats with damp blockage of the middle energizer. METHODS The rats were randomly divided into normal group, model group, positive control group (Raceanisodamine tablet, 1 mg/kg), HMF low-dose, medium-dose and high-dose groups (0.3, 0.6, 0.9 mg/kg), with 7 rats in each group. Except for the normal group, the other groups were modeled by internal and external composite factors. After successful modeling, the rats in each group were given the corresponding drug or normal saline, once a day, for 14 days. The general behavioral states such as dietary intake, water intake and mental state of the rats were observed, and the fecal water content rate and saliva flow rate were measured. Hematoxylin-eosin (HE) staining was used to observe the pathological and morphology in gastric and small intestinal tissues of rats. The plasma content of aldosterone was detected, and the expression of aquaporins (AQP3) in the gastric tissue of rats was determined. RESULTS Compared with the normal group, the dietary intake and water intake of the model group rats were significantly decreased (P<0.01), the fecal water content rate, salivary flow rate, plasma content of aldosterone and the expression of AQP3 in gastric tissue were increased significantly (P<0.01). Gastric tissue injury invaded the mucosal muscle layer, resulting in mucosal muscle layer rupture; pathological and morphological changes such as small intestinal villous erosion and glandular structure destruction were observed in the small intestine. Compared with the model group, the dietary intake and water intake of rats were increased in HMF groups; fecal water content rate, salivary flow rate, plasma content of aldosterone, the expression of AQP3 in gastric tissue were decreased, most of the above differences were statistically significant (P<0.05 or P<0.01). The pathological and morphological changes in the gastric and small intestine tissues of rats had been improved to varying degrees. CONCLUSIONS HMF of Fructus Aurantii with dry property HMF could improve the symptoms of rats with damp blockage of middle energizer, the mechanism of which may be associated with reducing the content of plasma aldosterone and down-regulating the expression of gastric AQP3.
9.Effect of different locations of necrotic focus on the natural course of non-traumatic osteonecrosis of the femoral head
Rushun ZHAO ; Yangquan HAO ; Peng XU ; Xin ZHENG ; Yonghong JIANG ; Yuting ZHANG ; Mengfei WANG ; Chao LU
Chinese Journal of Tissue Engineering Research 2024;28(6):917-921
BACKGROUND:For non-traumatic osteonecrosis of the femoral head,if the femoral head collapses,it will have a great impact on the normal life of the patients.Thus,it is necessary to use an appropriate way to evaluate the risk of femoral head collapse and then to take targeted measures to delay the process of femoral head collapse. OBJECTIVE:To analyze the natural course of early osteonecrosis of the femoral head(without collapse)under different locations of necrotic lesions. METHODS:121 patients(191 hips)with early non-traumatic osteonecrosis of the femoral head who were treated in the Outpatient Department of Honghui Hospital Affiliated to Xi'an Jiaotong University from October 2016 to October 2017 were enrolled in this study.The clinical data of all patients were followed up for 5 years to observe the collapse of osteonecrosis of the femoral head and the risk coefficient of femoral head collapse among different JIC types.The collapse rate of osteonecrosis of the femoral head was calculated during the follow-up. RESULTS AND CONCLUSION:(1)A total of 191 hips were included in this study.The femoral head collapsed in 86 hips during follow-up,with a total collapse rate of 45.0%.Among the influencing factors,age,ARCO stage and JIC classification were the main influencing factors of femoral head collapse(P<0.05),but body mass index,sex,incidence side and pathogenic factors were not the main influencing factors(P>0.05).(2)Among 191 hips,in JIC classification,the total collapse rates of type A,type B,type C1 and type C2 were 11.1%(2/18),30.2%(16/53),52.4%(43/82),and 65.8%(25/38),respectively.There were significant differences in the total collapse rate of the femoral head among all types(P<0.05).The collapse risk results showed that the collapse risk of type B,type C1 and type C2 was 2.41,5.22 and 7.89 times higher than that of type A,respectively.(3)Both JIC classification and ARCO stage were correlated with femoral head collapse(P<0.01).There was no significant difference in the collapse rate of the femoral head among all JIC types in ARCO I stage hips(P>0.05).In the hips with ARCO II stage,the collapse rates of the femoral head of JIC types A,B,C1 and C2 were 1.2%,19.5%,50.0%and 29.3%,respectively,and there were significant differences in the collapse rates among different types(P<0.05).(4)During follow-up,the collapse rates of the femoral head in the first to fifth years were 29.3%,7.9%,4.7%,2.6%and 0.5%,respectively.(5)Results showed that for early non-traumatic osteonecrosis of the femoral head,the risk of collapse of osteonecrosis of the femoral head is high within one year,and the location of the focus of osteonecrosis affects the risk of collapse of the femoral head.The effect of the location of the focus on the prognosis of the disease should be considered in clinical treatment.
10.Cadmium promotes senescence of annulus fibrosus cells via activation of PI3K/Akt signaling pathway
Xin LIU ; Man HU ; Wenjie ZHAO ; Yu ZHANG ; Bo MENG ; Sheng YANG ; Qing PENG ; Liang ZHANG ; Jingcheng WANG
Chinese Journal of Tissue Engineering Research 2024;28(8):1217-1222
BACKGROUND:Cadmium is a common environmental pollutant,which can damage multiple organs and tissues,such as the kidney and bone,but its effect on annulus fibrosus cells in the intervertebral disc has been less reported. OBJECTIVE:To investigate the effect of cadmium chloride on the senescence of annulus fibrosus cells and the role of PI3K/Akt signaling pathway. METHODS:Annulus fibrosus cells from Sprague-Dawley rat intervertebral discs were harvested and passage 3 cells were intervened with different concentrations of cadmium chloride(0,1,5,10,20 μmol/L).Cell viability and proliferation were detected by cell counting kit-8 assay.Transcriptome sequencing and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis were performed on annulus fibrosus cells with or without cadmium chloride addition.Passage 3 annulus fibrosus cells were divided into control group,cadmium chloride group and LY294002 group.Cell proliferation rate was detected by EdU method,positive cell rate was detected by senescence-associated β-galactosidase staining,and expressions of senescence-associated proteins(p16,p21 and p53)and p-Akt at protein and mRNA levels were measured by western blot,RT-PCR and immunofluorescence. RESULTS AND CONCLUSION:5 μmol/L cadmium chloride could inhibit the proliferation of annulus fibrosus cells.Results from the Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that the main signal transduction pathways included PI3K/Akt,cell cycle and p53 signaling pathways,which were related to cell senescence and proliferation.PI3K/Akt signaling pathways with significant differential expression were selected for validation.Compared with the control group,the EdU-positive rate was significantly decreased in the cadmium chloride group(P<0.05),while the β-galactosidase-positive rate,the expression of senescence-associated proteins(p16,p21 and p53)and p-Akt significantly increased(P<0.05).Compared with the cadmium chloride group,the EdU-positive rate and p-Akt expression were significantly decreased in the LY294002 group(P<0.05),while the β-galactosidase-positive rate and the expression of senescence-associated proteins(p16,p21 and p53)significantly increased(P<0.05).To conclude,cadmium chloride can regulate the senescence of annulus fibrosus cells by activating the PI3K/Akt signaling pathway,thereby inducing the occurrence and progression of intervertebral disc degeneration.

Result Analysis
Print
Save
E-mail