1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
3.Construction of Tax-PC/SDC/PVP-K30 micelles and their protective effect on alcoholic liver injury
Shi-yu ZHANG ; Jing-meng SUN ; Dong-dong LI ; Xin ZHANG ; Jia-hui ZHANG ; Wei-yu ZHANG
Acta Pharmaceutica Sinica 2025;60(2):488-497
Taxifolin (Tax) has been proved to be a medicinal edible substance with protective effects against alcoholic liver injury, however, its poor hydrophilicity and permeability have hindered the clinical application of Tax. In this study, we prepared taxifolin-phosphatidylcholine/sodium deoxycholate/PVP-K30 micells (Tax-MLs). Box-Behnken test was used to obtain the optimal preparation process, and Tax-MLs were characterised by transmission electron microscopy and fourier transform infrared spectroscopy. Physicochemical parameters such as proximate micelle concentration, equilibrium solubility and oil-water partition coefficient were determined, and the release pattern of Tax-MLs was investigated by
4.Effects of Conbercept on different optical coherence tomography biomarkers in patients with retinal vein occlusion-related macular edema
Haiyue YU ; Juan TENG ; Zeying DONG ; Lili ZHANG ; Huixian CUI ; Chang LIU ; Guang ZHU ; Xin LI
International Eye Science 2025;25(10):1656-1661
AIM: To investigate the effects of Conbercept on various optical coherence tomography(OCT)biomarkers in patients with retinal vein occlusion-related macular edema(RVO-ME), and to analyze the correlation of these biomarker changes with visual prognosis.METHODS: Retrospective study. A total of 57 patients(57 eyes)with RVO-ME, including 25 patients(25 eyes)with central retinal vein occlusion(CRVO)and 32 patients(32 eyes)with branch retinal vein occlusion(BRVO), were enrolled in this study. All the patients received intravitreal injection of conbercept once a month, three times in total. The preoperative and postoperative best-corrected visual acuity(BCVA), and changes in OCT biomarkers, including central macular thickness(CMT), the length of disorganization of the retinal inner layers(DRIL), the number of hyperreflective dots(HRD), the area of intraretinal fluid(IRF), the area of subretinal fluid(SRF), and the length of ellipsoid zone(EZ)disruption were compared. Furthermore, the relationship of these changes with BCVA was analyzed.RESULTS:Compared with the baseline, at 3 mo post-treatment, BCVA(LogMAR)was improved, CMT was decreased, the length of DRIL was shortened, the number of HRD was reduced, the area of IRF was decreased, the area of SRF was reduced, and the length of EZ disruption was shortened(all P<0.05). Spearman correlation analysis showed that there was no correlation between the changes in CMT, the length of DRIL, the number of HRD, the area of IRF, the area of SRF and the change in BCVA before and after treatment(P>0.05). However, the change in the length of EZ disruption was positively correlated with the change in BCVA(rs=0.34, P=0.011), and the R2 value of the fitting curve between the change in the length of EZ disruption and the change in BCVA was 0.113(P=0.011). When comparing the pre- and post-treatment changes in BCVA, the length of DRIL, the number of HRD, the area of IRF, the area of SRF, and the length of EZ disruption between patients in the CRVO group and BRVO group, no significant differences were observed(all P>0.05). In contrast, a significant difference was found in the change in CMT between the two groups(P=0.002).CONCLUSION:Conbercept effectively improves multiple OCT biomarkers in patients with RVO-ME. Repair of EZ disruption is a key driver of visual recovery, and its stability may serve as a novel indicator for personalized decision-making in anti-vascular endothelial growth factor therapy.
5.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
6.Evaluation of cardiac involvement in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis using echocardiography combined with electrocardiography
Aiqing LU ; Ling CHEN ; Xiuyun SUN ; Xin DONG ; Xiaoyan LI ; Yongcun SUN ; Shaowen LYU ; Long YU ; Yong ZHANG
Chinese Journal of Radiological Health 2025;34(4):534-539
Objective To evaluate cardiac involvement in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) using echocardiography combined with electrocardiography. Methods A retrospective analysis was performed on the detailed medical records of AAV patients treated in Jining First People’s Hospital between January 2020 and December 2024. Eighty patients were enrolled in the AAV group, and the risk of heart disease was compared between the AAV group and a control group with 80 subjects matched for age, sex, and cardiovascular disease risk factors. Results Electrocardiographic abnormalities were observed in 78.75% of patients in the AAV group, while significant electrocardiographic abnormalities only occurred in symptomatic patients in the control group. There were no differences in left atrial enlargement or interventricular septal thickening between the AAV group and the control group. The overall left ventricular systolic function in the AAV group was lower than that in the control group (8.75% vs. 0). The incidence of reduced diastolic function in the AAV group was significantly higher than that in the control group (37.5% vs. 15%). The incidence rates of tricuspid regurgitation, mitral regurgitation, aortic regurgitation, and pericardial effusion in the AAV group were significantly higher than those in the control group. Pericardial thickening, aortic stenosis, pulmonary hypertension, and rare periaortic granulomas were found in the AAV group, but not in the control group. Conclusion Echocardiography and electrocardiography are important examination methods for evaluating cardiac involvement in AAV. These methods have key roles in disease screening, diagnosis and treatment, follow-up, and prognosis judgment.
8.Impact of early detection and management of emotional distress on length of stay in non-psychiatric inpatients: A retrospective hospital-based cohort study.
Wanjun GUO ; Huiyao WANG ; Wei DENG ; Zaiquan DONG ; Yang LIU ; Shanxia LUO ; Jianying YU ; Xia HUANG ; Yuezhu CHEN ; Jialu YE ; Jinping SONG ; Yan JIANG ; Dajiang LI ; Wen WANG ; Xin SUN ; Weihong KUANG ; Changjian QIU ; Nansheng CHENG ; Weimin LI ; Wei ZHANG ; Yansong LIU ; Zhen TANG ; Xiangdong DU ; Andrew J GREENSHAW ; Lan ZHANG ; Tao LI
Chinese Medical Journal 2025;138(22):2974-2983
BACKGROUND:
While emotional distress, encompassing anxiety and depression, has been associated with negative clinical outcomes, its impact across various clinical departments and general hospitals has been less explored. Previous studies with limited sample sizes have examined the effectiveness of specific treatments (e.g., antidepressants) rather than a systemic management strategy for outcome improvement in non-psychiatric inpatients. To enhance the understanding of the importance of addressing mental health care needs among non-psychiatric patients in general hospitals, this study retrospectively investigated the impacts of emotional distress and the effects of early detection and management of depression and anxiety on hospital length of stay (LOS) and rate of long LOS (LLOS, i.e., LOS >30 days) in a large sample of non-psychiatric inpatients.
METHODS:
This retrospective cohort study included 487,871 inpatients from 20 non-psychiatric departments of a general hospital. They were divided, according to whether they underwent a novel strategy to manage emotional distress which deployed the Huaxi Emotional Distress Index (HEI) for brief screening with grading psychological services (BS-GPS), into BS-GPS ( n = 178,883) and non-BS-GPS ( n = 308,988) cohorts. The LOS and rate of LLOS between the BS-GPS and non-BS-GPS cohorts and between subcohorts with and without clinically significant anxiety and/or depression (CSAD, i.e., HEI score ≥11 on admission to the hospital) in the BS-GPS cohort were compared using univariable analyses, multilevel analyses, and/or propensity score-matched analyses, respectively.
RESULTS:
The detection rate of CSAD in the BS-GPS cohort varied from 2.64% (95% confidence interval [CI]: 2.49%-2.81%) to 20.50% (95% CI: 19.43%-21.62%) across the 20 departments, with a average rate of 5.36%. Significant differences were observed in both the LOS and LLOS rates between the subcohorts with CSAD (12.7 days, 535/9590) and without CSAD (9.5 days, 3800/169,293) and between the BS-GPS (9.6 days, 4335/178,883) and non-BS-GPS (10.8 days, 11,483/308,988) cohorts. These differences remained significant after controlling for confounders using propensity score-matched comparisons. A multilevel analysis indicated that BS-GPS was negatively associated with both LOS and LLOS after controlling for sociodemographics and the departments of patient discharge and remained negatively associated with LLOS after controlling additionally for the year of patient discharge.
CONCLUSION
Emotional distress significantly prolonged the LOS and increased the LLOS of non-psychiatric inpatients across most departments and general hospitals. These impacts were moderated by the implementation of BS-GPS. Thus, BS-GPS has the potential as an effective, resource-saving strategy for enhancing mental health care and optimizing medical resources in general hospitals.
Humans
;
Retrospective Studies
;
Male
;
Length of Stay/statistics & numerical data*
;
Female
;
Middle Aged
;
Adult
;
Psychological Distress
;
Inpatients/psychology*
;
Aged
;
Anxiety/diagnosis*
;
Depression/diagnosis*
9.Association of NLRP3 genetic variant rs10754555 with early-onset coronary artery disease.
Lingfeng ZHA ; Chengqi XU ; Mengqi WANG ; Shaofang NIE ; Miao YU ; Jiangtao DONG ; Qianwen CHEN ; Tian XIE ; Meilin LIU ; Fen YANG ; Zhengfeng ZHU ; Xin TU ; Qing K WANG ; Zhilei SHAN ; Xiang CHENG
Chinese Medical Journal 2025;138(21):2844-2846
10.Local overexpression of miR-429 sponge in subcutaneous white adipose tissue improves obesity and related metabolic disorders.
Liu YAO ; Wen-Jing XIU ; Chen-Ji YE ; Xin-Yu JIA ; Wen-Hui DONG ; Chun-Jiong WANG
Acta Physiologica Sinica 2025;77(3):441-448
Obesity is a worldwide health problem. An imbalance in energy metabolism is an important cause of obesity and related metabolic diseases. Our previous studies showed that inhibition of miR-429 increased the protein level of uncoupling protein 1 (UCP1) in beige adipocytes; however, whether local inhibition of miR-429 in subcutaneous adipose tissue affects diet-induced obesity and related metabolic disorders remains unclear. The aim of this study was to investigate the effect of local overexpression of miR-429 sponge in subcutaneous adipose tissue on obesity and related metabolic disorders. The control adeno-associated virus (AAV) or AAV expressing the miR-429 sponge was injected into mouse inguinal white adipose tissue. Seven days later, the mice were fed a high-fat diet for 10 weeks to induce obesity. The effects of the miR-429 sponge on body weight, adipose tissue weight, plasma glucose and lipid levels, and hepatic lipid content were explored. The results showed that the overexpression of miR-429 sponge in subcutaneous white adipose tissue reduced body weight and fat mass, decreased fasting blood glucose and plasma cholesterol levels, improved glucose tolerance, and alleviated hepatic lipid deposition in mice. Mechanistic investigation showed that the inhibition of miR-429 significantly upregulated the expression of UCP1 in adipocytes and adipose tissue. These results suggest that local inhibition of miR-429 in subcutaneous white adipose tissue ameliorates obesity and related metabolic disorders potentially by upregulating UCP1, and miR-429 is a potential therapeutic target for the treatment of obesity and related metabolic disorders.
Animals
;
MicroRNAs/physiology*
;
Obesity/metabolism*
;
Mice
;
Adipose Tissue, White/metabolism*
;
Metabolic Diseases
;
Subcutaneous Fat/metabolism*
;
Male
;
Uncoupling Protein 1/metabolism*
;
Diet, High-Fat
;
Mice, Inbred C57BL

Result Analysis
Print
Save
E-mail