1.Application of Engineered Exosomes in Tumor-targeted Therapy
Jia-Lu SONG ; Yi-Xin JIN ; Xing-Yu MU ; Yu-Huan JIANG ; Jing WANG
Progress in Biochemistry and Biophysics 2025;52(5):1140-1151
Tumors are the second leading cause of death worldwide. Exosomes are a type of extracellular vesicle secreted from multivesicular bodies, with particle sizes ranging from 40 to 160 nm. They regulate the tumor microenvironment, proliferation, and progression by transporting proteins, nucleic acids, and other biomolecules. Compared with other drug delivery systems, exosomes derived from different cells possess unique cellular tropism, enabling them to selectively target specific tissues and organs. This homing ability allows them to cross biological barriers that are otherwise difficult for conventional drug delivery systems to penetrate. Due to their biocompatibility and unique biological properties, exosomes can serve as drug delivery systems capable of loading various anti-tumor drugs. They can traverse biological barriers, evade immune responses, and specifically target tumor tissues, making them ideal carriers for anti-tumor therapeutics. This article systematically summarizes the methods for exosome isolation, including ultracentrifugation, ultrafiltration, size-exclusion chromatography (SEC), immunoaffinity capture, and microfluidics. However, these methods have certain limitations. A combination of multiple isolation techniques can improve isolation efficiency. For instance, combining ultrafiltration with SEC can achieve both high purity and high yield while reducing processing time. Exosome drug loading methods can be classified into post-loading and pre-loading approaches. Pre-loading is further categorized into active and passive loading. Active loading methods, including electroporation, sonication, extrusion, and freeze-thaw cycles, involve physical or chemical disruption of the exosome membrane to facilitate drug encapsulation. Passive loading relies on drug concentration gradients or hydrophobic interactions between drugs and exosomes for encapsulation. Pre-loading strategies also include genetic engineering and co-incubation methods. Additionally, we review approaches to enhance the targeting, retention, and permeability of exosomes. Genetic engineering and chemical modifications can improve their tumor-targeting capabilities. Magnetic fields can also be employed to promote the accumulation of exosomes at tumor sites. Retention time can be prolonged by inhibiting monocyte-mediated clearance or by combining exosomes with hydrogels. Engineered exosomes can also reshape the tumor microenvironment to enhance permeability. This review further discusses the current applications of exosomes in delivering various anti-tumor drugs. Specifically, exosomes can encapsulate chemotherapeutic agents such as paclitaxel to reduce side effects and increase drug concentration within tumor tissues. For instance, exosomes loaded with doxorubicin can mitigate cardiotoxicity and minimize adverse effects on healthy tissues. Furthermore, exosomes can encapsulate proteins to enhance protein stability and bioavailability or carry immunogenic cell death inducers for tumor vaccines. In addition to these applications, exosomes can deliver nucleic acids such as siRNA and miRNA to regulate gene expression, inhibit tumor proliferation, and suppress invasion. Beyond their therapeutic applications, exosomes also serve as tumor biomarkers for early cancer diagnosis. The detection of exosomal miRNA can improve the sensitivity and specificity of diagnosing prostate and pancreatic cancers. Despite their promising potential as drug delivery systems, challenges remain in the standardization and large-scale production of exosomes. This article explores the future development of engineered exosomes for targeted tumor therapy. Plant-derived exosomes hold potential due to their superior biocompatibility, lower toxicity, and abundant availability. Furthermore, the integration of exosomes with artificial intelligence may offer novel applications in diagnostics, therapeutics, and personalized medicine.
3.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
4.Evaluation of the weight loss effect of a comprehensive intervention among overweight and obese female college students
Chinese Journal of School Health 2025;46(11):1569-1573
Objective:
To investigate the weight loss effect of a comprehensive intervention model combining caloric restriction (CR), physical activity (PA), behavioral therapy (BT), breathing exercise (BE), and functional movement corrective training (FMCT)-referred to as the "CPBBF" model in overweight and obese female college students, so as to provide a reference for scientific weight loss interventions for college students.
Methods:
From March to May 2022, 46 overweight and obese female college students from Chongqing Water Resources and Electric Engineering College were recruited and randomly divided into an experimental group (24 participants) and a control group (22 participants). The control group received CR (prohibiting ad libitum snacking), PA in the first week, high intensity interval training (HIIT) for 30 s, and moderate intensity continuous training (MICT) for 1-5 min alternate 4 sets, duration 15-20 min. From the second week, adjust to HIIT and MICT alternating 3 min each for 5 sets, totaling 30 min, 4 times/week, 70 min/time and BT (60-90 min/session, 3 times/week). The experimental group incorporated FMCT (10-15 min of focused training per session, integrated with PA and daily life) and BE (advocating a gradual transition to proper breathing methods in daily life and low intensity training, 5 sessions/day, 10 min each). Body oxygen level test (BOLT), Functional Movement Screen (FMS), sports exercise attitude, and body composition indicators were measured at baseline (T0), after 12 weeks of intervention (T1), and after one year of follow up (T2). The differences were analyzed between groups through generalized estimation equations, and mixed effect model analysis was employed to explore predictive relationships among variables.
Results:
The results of the generalized estimation equation showed that time main effects of BOLT values, FMS scores, and exercise attitude among female college students were statistically significant ( Wald χ 2=18.75, 14.89, 12.45, all P <0.01); further intragroup comparisons revealed that BOLT, functional motor screening (FMS) scores, and physical exercise attitudeof female college students in the experimental group increased compared to T0, while the control group only showed an increase at T1 (all P <0.05). The group main effects for the aforementioned three indicators were statistically significant ( Wald χ 2=6.33, 5.21, 4.88), and the time by group interactions of BOLT values and FMS scores were also statistically significant ( Wald χ 2=4.56, 3.97) (all P <0.05). The time main effects of body weight, body mass index (BMI), and body fat ratio(BFR) in female college students were statistically significant ( Wald χ 2=44.27, 13.90, 82.33); further intragroup comparisons revealed that the experimental group of female college students showed a decrease in body weight, BMI and BFR at T1 and T2 compared to T0, while the control group only showed a decrease in these indicators at T1 (all P <0.05). The group main effects of weight and BFR were statistically significant ( Wald χ 2= 4.11 , 6.46), and the time by group interaction of BFR was statistically significant ( Wald χ 2=8.73) (all P <0.05).The results of mixed effect model analysis showed that BOLT ( β =1.52) and FMS ( β =1.81) could both positively predict physical exercise attitude, and physical exercise attitude had statistically significant negative predictive effects on weight, BMI, and BFR ( β =-0.08, -0.03 , -0.03) (all P <0.01).
Conclusion
The "CPBBF" comprehensive intervention effectively maintains weight loss effects by modulating the energy compensation mechanism with strong robustness.
6.Robotic-assisted radical colorectal cancer surgery with the KangDuo surgical robotic system vs . the da Vinci Xi surgical system in elderly patients: A multicenter randomized controlled trial.
Hao ZHANG ; Yuliuming WANG ; Chunlin WANG ; Yunxiao LIU ; Xin WANG ; Xin ZHANG ; Yihaoran YANG ; Junyang LU ; Lai XU ; Zhen SUN ; Zhengqiang WEI ; Yi XIAO ; Guiyu WANG
Chinese Medical Journal 2025;138(11):1384-1386
7.Effect and mechanism of Buyang Huanwu Decoction in improving neurological function in ischemic stroke rats based on IRE1α/ASK1/JNK pathway.
Xin-Rong ZHANG ; Tian-Lang WANG ; Jia-Hao ZHANG ; Lu JIN ; Jian-Bo WANG ; Ya-Nan XUE ; Yi QU
China Journal of Chinese Materia Medica 2025;50(14):3857-3867
This study aimed to investigate the effect and mechanism of Buyang Huanwu Decoction in regulating endoplasmic reticulum stress via the inositol-requiring enzyme 1α(IRE1α)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway to improve neurological function in rats with cerebral ischemia/reperfusion injury(CIRI). SPF-grade male sprague-dawley(SD) rats were randomly divided into Sham group, model group, Buyang Huanwu Decoction group, and edaravone group. Except for the Sham group, the other groups were subjected to the modified suture method to establish a middle cerebral artery occlusion/reperfusion(MCAO/R) model. After treatment, neurological function was assessed using the Zea Longa scoring system. Gait analysis was used to detect the motor function. Detection of relative infarct area in brain tissue using 2,3,5-triphenyltetrazolium chloride(TTC) staining. Nissl staining was used to observe the structure of neuronal cells. Western blot and real-time fluorescence quantitative PCR(RT-qPCR) were used to detect IRE1α, ASK1, JNK, B cell lymphoma-2(Bcl-2), Bcl-2 related X protein(Bax), and Caspase-3 in the brain tissue. Immunohistochemistry was used to detect the positive expression of IRE1α, ASK1, and JNK. Immunofluorescence was used to detect the fluorescence expression levels of Bax, Bcl-2, and Caspase-3. The results showed that compared with the Sham group, the model group exhibited increased neurological scores(P<0.01), increased ratio of ground contact area and strength in both forelimbs(P<0.01), enlarged relative infarct area of brain tissue(P<0.05), and a reduced number of Nissl staining-positive cells(P<0.01). The protein and mRNA expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 in brain tissue were significantly elevated, while those of Bcl-2 were decreased(P<0.05). Compared with the model group, both the Buyang Huanwu Decoction group and edaravone group showed reduced neurological scores(P<0.05), decreased ratio of ground contact area and strength in both forelimbs(P<0.05), smaller relative infarct area(P<0.05), alleviated neuronal damage, and increased number of Nissl staining-positive cells(P<0.05). The expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 protein and mRNA in brain tissue were significantly reduced, while those of Bcl-2 were significantly increased(P<0.05). The results indicated that Buyang Huanwu Decoction can effectively improve brain injury in CIRI rats, and its mechanism of action may be related to regulating the endoplasmic reticulum stress IRE1α/ASK1/JNK signaling pathway.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
MAP Kinase Kinase Kinase 5/genetics*
;
Ischemic Stroke/physiopathology*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Apoptosis/drug effects*
;
Endoribonucleases/genetics*
;
JNK Mitogen-Activated Protein Kinases/genetics*
;
Endoplasmic Reticulum Stress/drug effects*
;
Multienzyme Complexes
8.Development and Initial Validation of the Multi-Dimensional Attention Rating Scale in Highly Educated Adults.
Xin-Yang ZHANG ; Karen SPRUYT ; Jia-Yue SI ; Lin-Lin ZHANG ; Ting-Ting WU ; Yan-Nan LIU ; Di-Ga GAN ; Yu-Xin HU ; Si-Yu LIU ; Teng GAO ; Yi ZHONG ; Yao GE ; Zhe LI ; Zi-Yan LIN ; Yan-Ping BAO ; Xue-Qin WANG ; Yu-Feng WANG ; Lin LU
Chinese Medical Sciences Journal 2025;40(2):100-110
OBJECTIVES:
To report the development, validation, and findings of the Multi-dimensional Attention Rating Scale (MARS), a self-report tool crafted to evaluate six-dimension attention levels.
METHODS:
The MARS was developed based on Classical Test Theory (CTT). Totally 202 highly educated healthy adult participants were recruited for reliability and validity tests. Reliability was measured using Cronbach's alpha and test-retest reliability. Structural validity was explored using principal component analysis. Criterion validity was analyzed by correlating MARS scores with the Toronto Hospital Alertness Test (THAT), the Attentional Control Scale (ACS), and the Attention Network Test (ANT).
RESULTS:
The MARS comprises 12 items spanning six distinct dimensions of attention: focused attention, sustained attention, shifting attention, selective attention, divided attention, and response inhibition.As assessed by six experts, the content validation index (CVI) was 0.95, the Cronbach's alpha for the MARS was 0.78, and the test-retest reliability was 0.81. Four factors were identified (cumulative variance contribution rate 68.79%). The total score of MARS was correlated positively with THAT (r = 0.60, P < 0.01) and ACS (r = 0.78, P < 0.01) and negatively with ANT's reaction time for alerting (r = -0.31, P = 0.049).
CONCLUSIONS
The MARS can reliably and validly assess six-dimension attention levels in real-world settings and is expected to be a new tool for assessing multi-dimensional attention impairments in different mental disorders.
Humans
;
Adult
;
Male
;
Attention/physiology*
;
Female
;
Middle Aged
;
Reproducibility of Results
;
Young Adult
;
Psychometrics
9.Early follow-up study on three-dimensional-printed customized porous acetabular components for reconstructing extensive acetabular bone defects in primary total hip arthroplasty.
Shangkun TANG ; Zhuangzhuang LI ; Xin HU ; Linyun TAN ; Hao WANG ; Yitian WANG ; Minxun LU ; Fan TANG ; Yi LUO ; Yong ZHOU ; Chongqi TU ; Li MIN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(12):1543-1550
OBJECTIVE:
To evaluate the feasibility and short-term effectiveness of three-dimensional (3D)-printed customized porous acetabular components for reconstruction of extensive acetabular bone defects during primary total hip arthroplasty (THA).
METHODS:
The clinical data of 8 patients with extensive acetabular bone defects, who were treated with 3D-printed individualized porous acetabular components between July 2018 and January 2022, were retrospectively analyzed. The cohort comprised 4 males and 4 females with an average age of 48 years ranging from 34 to 56 years. Acetabular bone defects were classified as Paprosky type ⅢA in 3 cases and type ⅢB in 5 cases. The causes of acetabular destruction were hip tuberculosis (5 cases), pigmented villonodular synovitis (2 cases), and syphilitic arthritis (1 case). Visual analogue scale (VAS) score and Harris hip score (HHS) were used to evaluate the pain relief and hip function before and after operation. Reconstruction outcomes were further assessed by imaging results [X-ray film and Tomosynthesis Shimadzumetal artefact reduction technology (T-SMART)], and the mechanical properties were evaluated by finite element analysis.
RESULTS:
The operation time ranged from 174 to 195 minutes (mean, 187 minutes), and intraoperative blood loss ranged from 390 to 530 mL (mean, 465 mL). All 8 patients were follow-up 26-74 months (mean, 44 months). Among the 5 patients with tuberculosis, none experienced postoperative recurrence. At last follow-up, the VAS score was 0.3±0.5 and the HHS score was 87.9±3.7, both significantly improved compared to preoperative values ( t=25.170, P<0.001; t=-28.322, P<0.001). X-ray films at 2 years after operation demonstrated satisfactory matching between the 3D-printed customized acetabular component and the acetabulum. The postoperative center of rotation of the operated hip was shifted by (2.1±0.5) mm horizontally and (2.0±0.7) mm vertically relative to the contralateral side, with both offsets showing significant differences compared to preoperative values ( t=24.700, P<0.001; t=55.230, P<0.001). T-SMART imaging showed satisfactory osseointegration at the implant-host bone interface. No complications such as aseptic loosening or screw breakage was observed during follow-up. Finite element analysis showed that the acetabular component had good mechanical properties.
CONCLUSION
The application of 3D-printed individualized porous acetabular components in the reconstruction of extensive acetabular bone defects demonstrated precise anatomical reconstruction, stable mechanical support, and good functional performance in short-term follow-up, offering a potential alternative for acetabular defect reconstruction in primary THA.
Humans
;
Middle Aged
;
Male
;
Female
;
Printing, Three-Dimensional
;
Arthroplasty, Replacement, Hip/instrumentation*
;
Acetabulum/diagnostic imaging*
;
Adult
;
Follow-Up Studies
;
Retrospective Studies
;
Hip Prosthesis
;
Prosthesis Design
;
Porosity
;
Treatment Outcome
;
Plastic Surgery Procedures/methods*
10.Prevalence and risk factors of training-related abdominal injuries: A multicenter survey study.
Chuan PANG ; Wen-Quan LIANG ; Gan ZHANG ; Ting-Ting LU ; Yun-He GAO ; Xin MIAO ; Zhi-Da CHEN ; Yi LIU ; Wen-Tong XU ; Hong-Qing XI
Chinese Journal of Traumatology 2025;28(4):301-306
PURPOSE:
This study aims to identify the prevalence and risk factors of military training-related abdominal injuries and help plan and conduct training properly.
METHODS:
This questionnaire survey study was conducted from October 2021 to May 2022 among military personnel from 6 military units and 8 military medical centers and participants' medical records were consulted to identify the training-related abdominal injuries. All the military personnel who ever participated in military training were included. Those who refused to participate in this study or provided an incomplete questionnaire were excluded. The questionnaire collected demographic information, type of abdominal injury, frequency, training subjects, triggers, treatment, and training disturbance. Chi-square test and t-test were used to compare baseline information. Univariate and multivariate regression analyses were used to explore the risk factors associated with military training-related abdominal injuries.
RESULTS:
A total of 3058 participants were involved in this study, among which 1797 (58.8%) had suffered training-related abdominal injuries (the mean age was 24.3 years and the service time was 5.6 years), while 1261 (41.2%) had no training-related abdominal injuries (the mean age was 23.1 years and the service time was 4.3 years). There were 546 injured patients (30.4%) suspended the training and 84 (4.6%) needed to be referred to higher-level hospitals. The most common triggers included inadequate warm-up, fatigue, and intense training. The training subjects with the most abdominal injuries were long-distance running (589, 32.8%). Civil servants had the highest rate of abdominal trauma (17.1%). Age ≥ 25 years, military service ≥ 3 years, poor sleep status, and previous abdominal history were independent risk factors for training-related abdominal injury.
CONCLUSION
More than half of the military personnel have suffered military training-related abdominal injuries. Inadequate warm-up, fatigue, and high training intensity are the most common inducing factors. Scientific and proper training should be conducted according to the factors causing abdominal injuries.
Humans
;
Military Personnel
;
Risk Factors
;
Prevalence
;
Male
;
Abdominal Injuries/etiology*
;
Female
;
Adult
;
Surveys and Questionnaires
;
Young Adult


Result Analysis
Print
Save
E-mail