1.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
2.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
3.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
4.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
5.Construction and practice of an intelligent management system for preoperative anemia based on multidisciplinary collaboration
Cuihua TAO ; Yingsen HU ; Xin LIAO ; Hongling TANG ; Liyuan JIANG ; Jiangshang SUN ; Man MOU ; Xiaohui LIU ; Yong HE ; Jie YANG
Chinese Journal of Blood Transfusion 2025;38(9):1242-1247
Objective: To improve the efficiency and standardization of preoperative anemia diagnosis and treatment by establishing a systematic intelligent management platform for preoperative anemia. Methods: A multidisciplinary collaborative model was adopted to develop a preoperative anemia management system that integrates intelligent early warning, standardized treatment pathways, and quality control. The system utilizes natural language processing technology to automatically capture laboratory data and establish evidence-based medical decision support functions. A pre-post study design was employed to compare changes in preoperative anemia screening rates, preoperative anemia intervention rates, reasonable use of iron supplements, and perioperative red blood cell transfusion rates before and after system implementation. Results: After system implementation, the standardization of anemia diagnosis and treatment significantly improved: 1) Screening effectiveness: The anemia screening rate increased to 50.00% (an increase of 27.24%); 2) Intervention effectiveness: The anemia treatment rate rose to 56.30% (an increase of 14.02%); 3) Treatment standardization: The reasonable use rate of iron supplements increased to 55.33% (an increase of 21.02%); the red blood cell transfusion rate decreased to 18.29% (a decrease of 4.07%), and the amount of red blood cell transfusions was reduced by 291 units. Conclusion: This system achieves full-process management of preoperative anemia through information technology, significantly enhancing the standardization of diagnosis and treatment as well as intervention effectiveness, providing an effective solution for perioperative anemia management.
6.Exploring the idea of differentiating and treating mild cognitive impairment due to Alzheimer′s disease based on latent toxin blocking collaterals
Hu XI ; Wenming YANG ; Hao LI ; Wenting XIE ; Yue YANG ; Shu ZHAI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):559-565
Mild cognitive impairment due to Alzheimer′s disease is an inevitable pathological stage in the early development of Alzheimer′s disease, which can be classified as "microlumps in the brain collaterals" in traditional Chinese medicine. Based on the theory of latent toxin blocking collaterals, this article discusses the etiology and pathogenesis, clinical sequelae, and traditional Chinese medicine intervention strategies for mild cognitive impairment due to Alzheimer′s disease. The onset of mild cognitive impairment due to Alzheimer′s disease is very similar to the latent pathogen theory, which states that "the latent pathogen is latent and then develops, the poison is deep and difficult to cure, and the development can be recognized but the latent pathogen cannot be detected." Combining clinical experience, our team believes that the basic nature of the disease is a slight deficiency and a slight excess of symptoms. A slight deficiency of the five zang viscera and six fu viscera as root and a latent toxin colling collaterals of qi, fire, phlegm, and blood stasis as manifestaion. These usually start from the qi depression and develop into phlegm coagulation and blood stasis, then end up in latent toxin and gradually become the healthy qi deficiency. Therefore, the deficiency of vital qi and incubation of evil, latent toxin blocking collaterals the pathogenesis of early intervention of this disease should be carried out, upholding the idea that "the upper workman treats the disease before it is diagnosed." The principle of strengthening vital qi to eliminate pathogenic factors, slowing down and promoting pathogenic factors elimination, establishing the method of supporting correctness and wisdom, simultaneously detoxifying and clearing the blood stasis, pattern differentiation as the main and the disease differentiation as the first, combining the disease and pattern, and adjusting the macroscopic and microscopic, focusing simultaneously on eliminating and replenishing, dispel phlegm and remove blood stasis, achieve a strong vital qi and the elimination of evil, and enhance intelligence, delay or even block the progression of mild cognitive impairment due to Alzheimer′s disease, improve patients′ quality of life, and provide a theoretical basis for the early clinical prevention and treatment of Alzheimer′s disease.
7.Interpretation of report on cardiovascular health and diseases in China 2023
Ming-Bo LIU ; Xin-Ye HE ; Xiao-Hong YANG ; Zeng-Wu WANG ; Sheng-Shou HU
Chinese Journal of Interventional Cardiology 2024;32(10):541-550
Due to the prominent unhealthy lifestyle of residents,accelerated population aging,and urbanization processes in our country,the impact of cardiovascular disease(CVD)risk factors on public health is becoming increasingly significant.The prevalence of cardiovascular disease(CVD)in China is still on the rise.It is estimated that there are 330 million people with CVD,including 13 million cases of stroke,11.39 million cases of coronary heart disease,8.9 million cases of heart failure,5 million cases of pulmonary heart disease,4.87 million atrial fibrillation,2.5 million cases of rheumatic heart disease,2 million cases of congenital heart disease,45.3 million cases of peripheral arterial disease,and 245 million cases of hypertension.The economic burden of CVD on residents and society is increasingly heavy,making it a significant public health issue.The turning point for the prevention and control of CVD has not yet arrived,and it is urgent to strengthen government-led efforts in CVD prevention and control.
8.125I seeds implantation for treating middle-late stage lung cancer in elderly patients:Efficacy and prospects
Yang LUO ; Hong HU ; Liming ZHONG ; Xin WEI
Chinese Journal of Interventional Imaging and Therapy 2024;21(9):565-568
Most patients with initial diagnosed lung cancer are at advanced ages.125I seeds implantation for treating lung cancer has advantages of high intratumoral dose and low radiation damage to surrounding tissue,especially suitable for elderly patients not able to tolerate surgery nor external radiotherapy.The efficacy and prospects of 125I seeds implantation for treating middle-late stage lung cancer in elderly patients were reviewed in this article.
9.Utilization of endoclip papilloplasty in endoscopic retrograde cholangiopancreatography
Duoqiang ZHANG ; Bo PENG ; Jing LIU ; Guojun XIN ; Xiaojun HU ; Yong YANG ; Chengqiang HAO ; Xiaoyan ZHANG
China Journal of Endoscopy 2024;30(6):1-7
Objective To explore the clinical utility of endoclip papilloplasty in endoscopic retrograde cholangiopancreatography(ERCP).Methods A prospective study was conducted and selected 62 patients who underwent ERCP from November 2021 to November 2022.30 out of 32 patients who randomly underwent endoclip papilloplasty were successful.These patients were assigned to successful endoclip papilloplasty group(group A,n=30)or the duodenal papilla unclamping group(group B,n=30).The aim was to compare the difference in short-term and long-term complications between the two groups.Results The success rate of papillary plasty was 93.8%(30/32),with no statistically significant differences observed in the incidence of postoperative pancreatitis,postoperative hemorrhage after ERCP,and postoperative cholangitis between the two groups(P>0.05).The duodenal perforation rate was 0.There were no significant differences between the two groups in terms of total cholangitis incidence and recurrence rate of calculus of common bile duct within 1 year(P>0.05).However,there was a statistical difference in terms of total the incidence of cholangitis+calculus of common bile duct recurrence within 1 year(P<0.05).Conclusion The endoclip papilloplasty exhibits a high success rate and safety and feasibility procedure reducing long-term recurrence rate of cholangitis and calculus of common bile duct in endoscopic papillary large balloon dilation(EPLBD)procedure.
10.Lipidomic Analysis Revealed the Regulatory Mechanism of High Altitude Hypoxia on Phospholipid Metabolism in Mouse Spleen Tissue
Xin WANG ; Yu-Jing GUO ; Jia-Yang WANG ; Xiao-Jun WANG ; Ying HU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(9):1289-1299
The spleen is the largest lymphoid organ of the body,which participates in the regulation of metabolic balance.High altitude hypoxia environment can affect lipid metabolism in spleen tissue,but the key mechanism of lipid metabolism is still unclear.We aimed to use lipidomic analysis to study the effect of high altitude hypoxia on lipid metabolism in mouse spleen tissue.C57BL/6 mice were placed at an altitude of 4 200 m and 400 m,respectively,and after 30 days the spleen tissues were harvested and lipidomic analysis was performed using an ultra-high performance liquid chromatography-Orbitrap mass spectrometry system.Under the high altitude hypoxia environment,the spleen index of mice and the white pulp decreased,and the germinal center expanded with other pathological changes.The results of lipidomic analysis showed that a total of 41 lipid subclasses and 2 473 lipid molecules were identified,and triacylglycerides(TGs)and phosphatidylcholines(PCs)were the two most identified lipid mole-cules.Using univariate and multivariate analysis,44 differentially expressed lipid molecules were identi-fied,which were mainly concentrated in phospholipid metabolism.Subsequently,RT-qPCR was per-formed on the key enzymes in the phospholipid metabolic pathway,and it was found that the mRNA ex-pression levels were different(P<0.05).It suggested that high altitude hypoxia environment mainly af-fects the phospholipid metabolism of mouse spleen tissue via reducing the contents of PC and phosphatidic acid(PA),promoting their conversion to phosphatidylethanolamine(PE)and cardiolipin(CL)and fa-cilitating the PE production via the CDP-Etn pathway.This study provides a new experimental basis for the abnormal metabolism of phospholipids in spleen tissue under high altitude hypoxia environment.


Result Analysis
Print
Save
E-mail