1.Effect of The Hydrophilic Amino Acids on Self-assembly Behavior of Short Bola-like Peptides
Xin-Xin GAO ; Yu HAN ; Yi-Lin ZHOU ; Xi-Ya CHEN ; Yu-Rong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1290-1301
ObjectiveBola-like short peptides exhibit novel self-assembly properties due to the formation of peptide dimers via hydrogen bonding interactions between their C-terminals. In this configuration, hydrophilic amino acids are distributed at both terminals, making these peptides behave similarly to Bola peptides. The electrostatic repulsive interactions arising from the hydrophilic amino acids at each terminal can be neutralized, thereby greatly promoting the lateral association of β-sheets. Consequently, assemblies with significantly larger widths are typically the dominant nanostructures for Bola-like peptides. To investigate the effect of hydrophilic amino acids on the self-assembly behavior of Bola-like peptides, the peptides Ac-RI3-CONH2 and Ac-HI3-CONH2 were designed and synthesized using the Bola-like peptide Ac-KI3-CONH2 as a template. Their self-assembly behavior was systematically examined. MethodsAtomic force microscopy (AFM) and transmission electron microscopy (TEM) were employed to characterize the morphology and size of the assemblies. The secondary structures of the assemblies were analyzed using circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Small-angle neutron scattering (SANS) was used to obtain detailed structural information at a short-length scale. Based on these experimental results, the effects of hydrophilic amino acids on the self-assembly behavior of Bola-like short peptides were systematically analyzed, and the underlying formation mechanism was explored. ResultsThe aggregation process primarily involved three steps. First, peptide dimers were formed through hydrogen bonding interactions between their C-terminals. Within these dimers, the hydrophilic amino acids K, R, and H were positioned at both terminals, enabling the peptides to self-assemble in a manner similar to Bola peptides. Next, β-sheets were formed via hydrogen bonding interactions along the peptide backbone. Finally, self-assemblies were generated through the lateral association of β-sheets. The results demonstrated that both Ac-KI3-CONH2 and Ac-RI3-CONH2 could self-assemble into double-layer nanotubes with diameters of approximately 200 nm. These nanotubes were formed by the edge fusion of helical ribbons, which initially emerged from twisted ribbons. Notably, the primary assemblies of these peptides exhibited opposite chirality: nanofibers formed by Ac-KI3-CONH2 displayed left-handed chirality, whereas those formed by Ac-RI3-CONH2 exhibited right-handed chirality. This reversal in torsional direction was primarily attributed to the different abilities of K and R to form hydrogen bonds with water. In contrast, Ac-HI3-CONH2 formed narrower twisted ribbons with a significantly reduced width of approximately 30 nm, which was attributed to the strong steric hindrance caused by the imidazole rings. The multilayer height of these ribbons was mainly due to the unique structure of the imidazole rings, which can function as both hydrogen bond donors and acceptors, thereby promoting aggregate growth in the vertical direction. ConclusionThe final morphology of the self-assemblies resulted from a delicate balance of various non-covalent interactions. By altering the types of hydrophilic amino acid residues in Bola-like short peptides, the relative strength of non-covalent interactions that drive assembly formation can be effectively regulated, allowing precise control over the morphology and chirality of the assemblies. This study provides a simple and effective approach for constructing diverse self-assemblies and lays a theoretical foundation for the development of functional biomaterials.
2.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
3.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
4.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
5.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
6.Genome-wide methylation profiling identified methylated KCNA3 and OTOP2 as promising diagnostic markers for esophageal squamous cell carcinoma
Yan BIAN ; Ye GAO ; Chaojing LU ; Bo TIAN ; Lei XIN ; Han LIN ; Yanhui ZHANG ; Xun ZHANG ; Siwei ZHOU ; Kangkang WAN ; Jun ZHOU ; Zhaoshen LI ; Hezhong CHEN ; Luowei WANG
Chinese Medical Journal 2024;137(14):1724-1735
Background::Early detection of esophageal squamous cell carcinoma (ESCC) can considerably improve the prognosis of patients. Aberrant cell-free DNA (cfDNA) methylation signatures are a promising tool for detecting ESCC. However, available markers based on cell-free DNA methylation are still inadequate. This study aimed to identify ESCC-specific cfDNA methylation markers and evaluate the diagnostic performance in the early detection of ESCC.Methods::We performed whole-genome bisulfite sequencing (WGBS) for 24 ESCC tissues and their normal adjacent tissues. Based on the WGBS data, we identified 21,469,837 eligible CpG sites (CpGs). By integrating several methylation datasets, we identified several promising ESCC-specific cell-free DNA methylation markers. Finally, we developed a dual-marker panel based on methylated KCNA3 and OTOP2, and then, we evaluated its performance in our training and validation cohorts. Results::The ESCC diagnostic model constructed based on KCNA3 and OTOP2 had an AUC of 0.91 [95% CI: 0.85–0.95], and an optimal sensitivity and specificity of 84.91% and 94.32%, respectively, in the training cohort. In the independent validation cohort, the AUC was 0.88 [95% CI: 0.83–0.92], along with an optimal sensitivity of 81.5% and specificity of 92.9%. The model sensitivity for stage I–II ESCC was 78.4%, which was slightly lower than the sensitivity of the model (85.7%) for stage III–IV ESCC. Conclusion::The dual-target panel based on cfDNA showed excellent performance for detecting ESCC and might be an alternative strategy for screening ESCC.
7.Research progress on molecular mechanism underlying neuropsychiatric diseases involving NMDA receptor and α2 adrenergic receptor
Wen-Xin ZHANG ; Dong-Yu ZHOU ; Yi HAN ; Ran JI ; Lin AI ; An XIE ; Xiao-Jing ZHAI ; Jun-Li CAO ; Hong-Xing ZHANG
Chinese Pharmacological Bulletin 2024;40(12):2206-2212
Glutamate,norepinephrine,and their receptors com-prise the glutamatergic and norepinephrine systems,which mu-tually affect each other and play essential roles in mediating vari-ous neuropsychiatric diseases.This paper reviews the functions of N-methyl-D-aspartate receptor(NMDA-R)and α2-adrenergic receptor(α2-AR)and their functional crosstalk at the molecular level in brain in common neuropsychiatric diseases,which would benefit our understanding of neuropathophysiology of psychiatric diseases,drug development and optimization of clinical neuro-psychopharmacology.
8.Analysis of the risk factors for delayed union of extra-articular fractures of the middle and lower third of the tibia treated by locking plate
Wei HE ; Zhao-Guang XU ; Wei-Shen LIN ; Fa-Sheng HE ; Jian-Xin ZHANG ; Yi-Qiang ZHOU
China Journal of Orthopaedics and Traumatology 2024;37(2):148-152
Objective To investigate the risk factors for delayed union of extra-articular fractures of the middle and lower third of the tibia treated by locking plate.Methods Total of 135 patients of extra-articular fractures of the middle and lower third of the tibia from January 2013 to December 2018 were retrospectively analyzed,including 85 males and 50 females,ranged from 19 to 80 years old.All cases were treated with locking plates.The patients were divided into union group and delayed union group ac-cording to the condition of fracture union.The risk factors of delayed healing were determined by univariate analysis of 14 factors that might affect fracture healing first,then the factors with significance were analyzed by binary Logistic regression.Results There were 13 patients of delayed union,and the rate of delayed union was 9.63%.Univariate analysis showed that delayed union was associated with age,smoking,reduction method,anemia and time of preoperative preparation.Regression analysis showed thatage[OR=0.849,95%CI(0.755,0.954),P=0.006],smoking[OR=0.020,95%CI(0.002,0.193),P=0.001],reduction method[OR=23.924,95%CI(2.210,258.943),P=0.009],anemia[OR=0.016,95%CI(0.001,0.289),P=0.005]were the con-tributory factors for delayed union.Conclusion Young age,smoking,closed reduction and anemia are the risk factors for de-layed union of extra-articular fractures of the middle and lower third of the tibia treated by locking plate.
9.Diagnostic concordance and influencing factors of quantitative flow fraction and fractional flow reserve
Rui-Tao ZHANG ; Peng-Xin XIE ; Zhen-Yu TIAN ; Lin MI ; Ji-Sheng ZHOU ; Ben-Zhen WU ; Li-Yun HE ; Li-Jun GUO
Chinese Journal of Interventional Cardiology 2024;32(9):481-488
Objective This study aimed to explore the diagnostic concordance of fractional flow reserve(FFR)and quantitative flow ratio(QFR)and the characteristics affecting this concordance.Methods Patients with non-acute myocardial infarction admitted to the Department of Cardiology,Peking University Third Hospital between January 2019 and December 2021 were enrolled.The patients were divided into four groups:FFR+/QFR+and FFR-/QFR-,FFR+/QFR-and FFR-/QFR+with FFR or QFR≤0.80 as positive and>0.80 as negative.Using FFR as the gold standard,the diagnostic value of QFR was analyzed,and differences in clinical features and pathological characteristics among the groups were compared.Results A total of 236 patients were included.The mean age was(64.48±9.63)years,and 67.8%were male.All patients had 30%-70%coronary stenosis.The consistency rate of QFR and FFR was 78.0%(n=184),and the Person correlation coefficient was 0.557(P<0.001).Among FFR+patients,the minimum lumen diameter was larger[(1.56±0.34)mm vs.(1.39±0.31)mm,P=0.019],lesion length was shorter[(21.37±11.73)mm vs.(36.86±18.09)mm,P<0.001],and coronary angiography-based index of microcirculartory resistance(AMR)was higher[(277.50±28.87)mmHg·s/m vs.(178.02±49.13)mmHg·s/m,P<0.001]in the disconcordance group.Multivariate regression analysis suggested that AMR[OR 0.93,95%CI 0.88-0.99,P=0.030]and lesion length[OR 1.27,95%CI 1.01-1.60,P=0.045]were independent predictors of disconcordance.In the FFR-group,the lesion length was longer[(33.08±16.05)mm vs.(21.40±13.36)mm,P=0.020],and AMR[(169.66±24.01)mmHg·s/m vs.(265.95±44.78)mmHg·s/m,P<0.001]and low-density lipoprotein-C[1.57(1.10,1.97)mmol/L vs.2.15(1.79,2.74)mmol/L,P=0.031]were lower in the disconcordance group.No statistically significant variables were identified by multivariate regression.Conclusions QFR had high diagnostic value compared with FFR.In the FFR+group,AMR and lesion length may have affected the diagnostic consistency of QFR and FFR.The study provided more evidence for the clinical application of QFR.
10.Genomic analysis of human quinolone resistant 1,4,5,12:i:-Salmonella in Jiangsu Province from 2014 to 2018
Dong-Yu ZHENG ; Kai MA ; Yi-Jing ZHOU ; Gao-Lin WU ; Xiang HUO ; Xin QIAO
Chinese Journal of Zoonoses 2024;40(8):739-744
The molecular epidemiological characteristics of 1,4,[5],12:i:-Salmonella in Jiangsu Province were analyzed through whole genome sequencing(WGS).The distribution characteristics of related genes were obtained on the basis of anno-tated drug-resistant genes and plasmid types in the whole genome.Analysis of the molecular epidemiological characteristics of strains with cgMLST revealed possible modes of transmission of quinolone resistance in 1,4,[5],12:i:-Salmonella.Eleven cat-egories of antibiotic resistance genes(ARGs)were annotated among the fluoroquinolone-resistant strains.The detection rate of aminoglycoside ARGs was highest(100%).Twelve quinolone-resistant strains(92.3%)carried the IncHI2/IncHI2A plasmid type.PMQR gene analysis of various strains indicated that the strains from the United States and Europe carried six types of PMQR genes,and the detection rate of qnrB19 was highest.The Jiangsu strains carried three PMQR gene types,and the de-tection rate of aac(6')-Ib-cr was highest(11.84%).Analysis of cgMLST loci from different countries/regions revealed three main epidemic clusters.Some isolates from Jiangsu province might have the same evolutionary origin as some isolates from Eu-rope and the United States,and national/regional differences were observed in the PMQR gene carriage level.

Result Analysis
Print
Save
E-mail