1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.Long-term Outcomes of Endoscopic Radiofrequency Ablation versus Endoscopic Submucosal Dissection for Widespread Superficial Esophageal Squamous Cell Neoplasia
Xin TANG ; Qian-Qian MENG ; Ye GAO ; Chu-Ting YU ; Yan-Rong ZHANG ; Yan BIAN ; Jin-Fang XU ; Lei XIN ; Wei WANG ; Han LIN ; Luo-Wei WANG
Gut and Liver 2025;19(2):198-206
Background/Aims:
Endoscopic radiofrequency ablation (ERFA) is a treatment option for superficial esophageal squamous cell neoplasia (ESCN), with a relatively low risk of stenosis; however, the long-term outcomes remain unclear. We aimed to compare the long-term outcomes of patients with widespread superficial ESCN who underwent endoscopic submucosal dissection (ESD) or ERFA.
Methods:
We retrospectively analyzed the clinical data of patients with superficial ESCN who underwent ESD or ERFA between January 2015 and December 2021. The primary outcome measure was recurrence-free survival.
Results:
Ninety-two and 33 patients with superficial ESCN underwent ESD and ERFA, respectively. The en bloc, R0, and curative resection rates for ESD were 100.0%, 90.2%, and 76.1%, respectively. At 12 months, the complete response rate was comparable between the two groups (94.6% vs 90.9%, p=0.748). During a median follow-up of 66 months, recurrence-free survival was significantly longer in the ESD group than in the ERFA group (p=0.004), while no significant differences in overall survival (p=0.845) and disease-specific survival (p=0.494) were observed.Preoperative diagnosis of intramucosal cancer (adjusted hazard ratio, 5.55; vs high-grade intraepithelial neoplasia) was an independent predictor of recurrence. Significantly fewer patients in the ERFA group experienced stenosis compare to ESD group (15.2% vs 38.0%, p=0.016).
Conclusions
The risk of recurrence was higher for ERFA than ESD for ESCN but overall survival was not affected. The risk of esophageal stenosis was significantly lower for patients who underwent ERFA.
3.Long-term Outcomes of Endoscopic Radiofrequency Ablation versus Endoscopic Submucosal Dissection for Widespread Superficial Esophageal Squamous Cell Neoplasia
Xin TANG ; Qian-Qian MENG ; Ye GAO ; Chu-Ting YU ; Yan-Rong ZHANG ; Yan BIAN ; Jin-Fang XU ; Lei XIN ; Wei WANG ; Han LIN ; Luo-Wei WANG
Gut and Liver 2025;19(2):198-206
Background/Aims:
Endoscopic radiofrequency ablation (ERFA) is a treatment option for superficial esophageal squamous cell neoplasia (ESCN), with a relatively low risk of stenosis; however, the long-term outcomes remain unclear. We aimed to compare the long-term outcomes of patients with widespread superficial ESCN who underwent endoscopic submucosal dissection (ESD) or ERFA.
Methods:
We retrospectively analyzed the clinical data of patients with superficial ESCN who underwent ESD or ERFA between January 2015 and December 2021. The primary outcome measure was recurrence-free survival.
Results:
Ninety-two and 33 patients with superficial ESCN underwent ESD and ERFA, respectively. The en bloc, R0, and curative resection rates for ESD were 100.0%, 90.2%, and 76.1%, respectively. At 12 months, the complete response rate was comparable between the two groups (94.6% vs 90.9%, p=0.748). During a median follow-up of 66 months, recurrence-free survival was significantly longer in the ESD group than in the ERFA group (p=0.004), while no significant differences in overall survival (p=0.845) and disease-specific survival (p=0.494) were observed.Preoperative diagnosis of intramucosal cancer (adjusted hazard ratio, 5.55; vs high-grade intraepithelial neoplasia) was an independent predictor of recurrence. Significantly fewer patients in the ERFA group experienced stenosis compare to ESD group (15.2% vs 38.0%, p=0.016).
Conclusions
The risk of recurrence was higher for ERFA than ESD for ESCN but overall survival was not affected. The risk of esophageal stenosis was significantly lower for patients who underwent ERFA.
4.Long-term Outcomes of Endoscopic Radiofrequency Ablation versus Endoscopic Submucosal Dissection for Widespread Superficial Esophageal Squamous Cell Neoplasia
Xin TANG ; Qian-Qian MENG ; Ye GAO ; Chu-Ting YU ; Yan-Rong ZHANG ; Yan BIAN ; Jin-Fang XU ; Lei XIN ; Wei WANG ; Han LIN ; Luo-Wei WANG
Gut and Liver 2025;19(2):198-206
Background/Aims:
Endoscopic radiofrequency ablation (ERFA) is a treatment option for superficial esophageal squamous cell neoplasia (ESCN), with a relatively low risk of stenosis; however, the long-term outcomes remain unclear. We aimed to compare the long-term outcomes of patients with widespread superficial ESCN who underwent endoscopic submucosal dissection (ESD) or ERFA.
Methods:
We retrospectively analyzed the clinical data of patients with superficial ESCN who underwent ESD or ERFA between January 2015 and December 2021. The primary outcome measure was recurrence-free survival.
Results:
Ninety-two and 33 patients with superficial ESCN underwent ESD and ERFA, respectively. The en bloc, R0, and curative resection rates for ESD were 100.0%, 90.2%, and 76.1%, respectively. At 12 months, the complete response rate was comparable between the two groups (94.6% vs 90.9%, p=0.748). During a median follow-up of 66 months, recurrence-free survival was significantly longer in the ESD group than in the ERFA group (p=0.004), while no significant differences in overall survival (p=0.845) and disease-specific survival (p=0.494) were observed.Preoperative diagnosis of intramucosal cancer (adjusted hazard ratio, 5.55; vs high-grade intraepithelial neoplasia) was an independent predictor of recurrence. Significantly fewer patients in the ERFA group experienced stenosis compare to ESD group (15.2% vs 38.0%, p=0.016).
Conclusions
The risk of recurrence was higher for ERFA than ESD for ESCN but overall survival was not affected. The risk of esophageal stenosis was significantly lower for patients who underwent ERFA.
5.Long-term Outcomes of Endoscopic Radiofrequency Ablation versus Endoscopic Submucosal Dissection for Widespread Superficial Esophageal Squamous Cell Neoplasia
Xin TANG ; Qian-Qian MENG ; Ye GAO ; Chu-Ting YU ; Yan-Rong ZHANG ; Yan BIAN ; Jin-Fang XU ; Lei XIN ; Wei WANG ; Han LIN ; Luo-Wei WANG
Gut and Liver 2025;19(2):198-206
Background/Aims:
Endoscopic radiofrequency ablation (ERFA) is a treatment option for superficial esophageal squamous cell neoplasia (ESCN), with a relatively low risk of stenosis; however, the long-term outcomes remain unclear. We aimed to compare the long-term outcomes of patients with widespread superficial ESCN who underwent endoscopic submucosal dissection (ESD) or ERFA.
Methods:
We retrospectively analyzed the clinical data of patients with superficial ESCN who underwent ESD or ERFA between January 2015 and December 2021. The primary outcome measure was recurrence-free survival.
Results:
Ninety-two and 33 patients with superficial ESCN underwent ESD and ERFA, respectively. The en bloc, R0, and curative resection rates for ESD were 100.0%, 90.2%, and 76.1%, respectively. At 12 months, the complete response rate was comparable between the two groups (94.6% vs 90.9%, p=0.748). During a median follow-up of 66 months, recurrence-free survival was significantly longer in the ESD group than in the ERFA group (p=0.004), while no significant differences in overall survival (p=0.845) and disease-specific survival (p=0.494) were observed.Preoperative diagnosis of intramucosal cancer (adjusted hazard ratio, 5.55; vs high-grade intraepithelial neoplasia) was an independent predictor of recurrence. Significantly fewer patients in the ERFA group experienced stenosis compare to ESD group (15.2% vs 38.0%, p=0.016).
Conclusions
The risk of recurrence was higher for ERFA than ESD for ESCN but overall survival was not affected. The risk of esophageal stenosis was significantly lower for patients who underwent ERFA.
6.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
7.Toxicity Attenuation Mechanism on Processing Method for Aconiti Lateralis Radix Praeparata in Guilingji Based on Urine Metabolomics
Jiayun XIN ; Jia CHEN ; Xike XU ; Xingrui QI ; Meixin YANG ; Tiantian LIN ; Huibo LEI ; Xianpeng ZU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):166-174
ObjectiveMetabolomics was used to reveal the mechanism of Aconiti Lateralis Radix Praeparata(ALRP) in attenuating toxicity by processing from the aspects of amino acid metabolism, oxidative stress and energy metabolism by analyzing multiple metabolic pathways. MethodTwenty-four rats were randomly divided into control group, raw group and processed group, 8 rats in each group. The raw and processed group were given with 0.64 g·kg-1 of raw ALRP and processed ALRP respectively every day, the control group was given with an equal amount of normal saline once a day. After continuous administration for 7 days, the urine, serum and heart tissue of rats were collected. Pathological examination of the heart was carried out using hematoxylin-eosin(HE) staining, and the activities of lactate dehydrogenase(LDH) and creatine kinase-MB(CK-MB) in serum and cardiac tissues were detected by microplate assay and immunoinhibition assay. The effects of ALRP on rat heart before and after processing were compared and analyzed. Ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to perform urine metabolomics analysis, and multivariate statistical analysis was used to screen for differential metabolites related to ALRP in attenuating toxicity by processing, and pathway enrichment analysis was carried out to explore the processing mechanism. ResultHE staining showed that no obvious pathological changes were observed in the heart tissue of the control group, while obvious infiltration of inflammatory cells such as plasma cells and granulocytes was observed in the heart tissue of the raw group, indicating that the raw ALRP had strong cardiotoxicity. There was no significant difference in HE staining of heart tissue between the processed group and the control group, indicating that the toxicity of ALRP was significantly reduced after processing. Compared with the control group, the activities of LDH and CK-MB were significantly increased in serum and heart tissue of the raw group, and those were significantly decreased in serum and heart tissue of the processed group, suggesting that the myocardial toxicity of processed ALRP was reduced. A total of 108 endogenous differential metabolites associated with the raw ALRP were screened using multivariate statistical analysis in positive and negative modes, of which 51 differential metabolites were back-regulated by the processed ALRP. Biological analysis of the key regulatory pathways and associated network changes showed that the pathways related to toxicity of ALRP mainly included tryptophan metabolism, arginine and proline metabolism, phenylalanine metabolism, aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, etc. The metabolic pathways related to the attenuation of processed ALRP mainly included aminoacyl-tRNA biosynthesis, tryptophan metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism and caffeine metabolism. ConclusionThe processing technology of ALRP in Guilingji can significantly attenuate the cardiotoxicity of raw products, the mechanism mainly involves amino acid metabolism, oxidative stress and energy metabolism, which can provide experimental bases for the research related to the mechanism of toxicity reduction of ALRP by processing and its clinical safety applications.
8.A pair of siblings with congenital short bowel syndrome and intestinal malrotation caused by a novel variation in the CLMP gene
Lili MA ; Xin LEI ; Xiangde LIN ; Yuandong CHEN ; Bo XU ; Guoxian HUANG
Chinese Journal of Perinatal Medicine 2024;27(2):158-160
This paper reports a pair of siblings with congenital short-bowel syndrome (CSBS) complicated with intestinal malrotation. Case 1 was born with a birth weight of 2 550 g and a length of 48 cm. On September 10, 2017, emergency Ladd's procedure and appendectomy were performed on the infant 23 days after birth due to intestinal obstruction at the Women and Children's Hospital, School of Medicine, Xiamen University. The small intestine of the infant had a total length of 65 cm. Postoperative enteral and parenteral nutrition supports were provided for six months. Whole exome sequencing revealed a homozygous variant (NM 024769; nucleotide deletion in the exon 3-5) in the CLMP gene (chr11:122953792-122955421), with the parents being the heterozygous carriers but without phenotype. Case 2, the younger sibling of Case 1, was born in the same hospital on March 20, 2020, with a birth weight of 2 932 g and a body length of 49 cm. Prenatal single-gene sequencing on the amniotic fluid identified the same gene variation as his sister's. The baby boy received Ladd's procedure and appendectomy on the second day after birth which found the length of his small intestine was 51 cm. Full enteral nutrition was achieved six months after the operation. Both cases were followed up for 12 months. The body weight and length of Case 1 were both below the first percentile (< P1). The body weight of Case 2 was 8.03 kg ( P3- P5) and the length was 76.0 cm ( P25- P50).
9.BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period.
Zhenmeiyu LI ; Guoping LIU ; Lin YANG ; Mengge SUN ; Zhuangzhi ZHANG ; Zhejun XU ; Yanjing GAO ; Xin JIANG ; Zihao SU ; Xiaosu LI ; Zhengang YANG
Protein & Cell 2024;15(1):21-35
The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.
Animals
;
Mice
;
Humans
;
Ependymoglial Cells/metabolism*
;
Hedgehog Proteins/metabolism*
;
Ferrets/metabolism*
;
Cerebral Cortex
;
Neurogenesis
;
Mammals/metabolism*
;
Neuroglia/metabolism*
;
Bone Morphogenetic Protein 7/metabolism*
10.Identification and anti-inflammatory activity of chemical constituents and a pair of new monoterpenoid enantiomers from the fruits of Litsea cubeba
Mei-lin LU ; Wan-feng HUANG ; Yu-ming HE ; Bao-lin WANG ; Fu-hong YUAN ; Ting ZHANG ; Qi-ming PAN ; Xin-ya XU ; Jia HE ; Shan HAN ; Qin-qin WANG ; Shi-lin YANG ; Hong-wei GAO
Acta Pharmaceutica Sinica 2024;59(5):1348-1356
Eighteen compounds were isolated from the methanol extract of the fruits of

Result Analysis
Print
Save
E-mail