1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Application of artificial intelligence and automated scripts in3D printing brachytherapy
Wentai LI ; Jiandong ZHANG ; Zhihe WANG ; Xiaozhen QI ; Yan DING ; Baile ZHANG ; Wenjun MA ; Yao ZHAI ; Weiwei ZHOU ; Yanan SUN ; Xin ZHANG
Chinese Journal of Radiological Health 2025;34(3):419-425
Objective To explore the efficiency improvement in segmenting neural network with the application of Transformer + U-Net artificial intelligence (AI) and modeling with the application of Python scripts in three-dimensional (3D) printing brachytherapy. Methods A Transformer + U-Net AI neural network model was constructed, and Adam optimizer was used to ensure rapid gradient descent. Computed tomography or magnetic resonance imaging data of patients were standardized and processed as self-made data sets. The training set was used to train AI and the optimal result weight parameters were saved. The test set was used to evaluate the AI ability. Python programming language was used to write an automated script to obtain the output segmentation image and convert it to the STL file for import. The source applicator and needle could be automatically modeled. The time of automatic segmentation and modeling and the time of manual segmentation and modeling were entered by two people, and the difference was verified by paired t-test. Results Dice similarity coefficient (DSC), mean intersection over union (MIOU), and Hausdorff distance (HD95) were used for evaluation. DSC was
7.Leveraging genetic differences and Mendelian randomization to dissect the causal link and shared etiology between diabetic nephropathy and diabetic retinopathy
Guoxin DING ; Jing WANG ; Xian WANG ; Zhou ZHANG ; Xin XIAO ; Yingqi LI
International Eye Science 2025;25(11):1838-1847
AIM: To investigate the genetic association and potential causal relationship between diabetic nephropathy(DN)and diabetic retinopathy(DR), and to elucidate their shared molecular mechanisms through differential gene expression analysis and Mendelian randomization(MR).METHODS: Transcriptomic data of DN and DR were obtained from the Gene Expression Omnibus(GEO)database and analyzed for differentially expressed genes(DEGs). Genes meeting the significance threshold(log2FC>1, P<0.05)were identified, followed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis to explore shared biological pathways. Using genome-wide association study(GWAS)summary statistics for DN and DR, two-sample MR analysis was performed, with DN as the exposure and DR as the outcome. The causal effect was primarily estimated with the inverse-variance weighted(IVW)method, and sensitivity analyses were conducted to assess robustness.RESULTS: MR analysis revealed that DN significantly increased the risk of DR. IVW estimates indicated that the odds ratio(OR)for non-proliferative DR(NPDR)was 3.23(95% CI: 2.12-4.95, P<0.001), and the OR for proliferative DR(PDR)was 1.10(95% CI: 1.06-1.15, P<0.001). DEG analysis identified several key genes, including FN1, COL1A2, and THBS2. FN1 and COL1A2 are involved in extracellular matrix remodeling and fibrosis, contributing to vascular permeability alterations and microvascular damage in diabetic complications. THBS2 is closely associated with angiogenesis and vascular homeostasis, suggesting its potential role in DR. KEGG enrichment analysis showed that these DEGs were mainly enriched in advanced glycation end products(AGEs)-RAGE signaling, extracellular matrix degradation, and oxidative stress pathways, all of which are highly relevant to the pathogenesis of DN and DR.CONCLUSION: This study demonstrates the genetic association between DN and DR using MR and DEGs analyses. The shared mechanisms, particularly involving extracellular matrix remodeling, inflammatory response, and angiogenesis, may serve as novel therapeutic targets and provide a theoretical basis for the early diagnosis and targeted treatment of diabetic complications.
8.Influencing factors for cognitive function among aluminum workers based on a quantile regression model
XIN Yulu ; LI Mujia ; DING Xiaohui ; LU Yang ; LI Wenjing ; WANG Linping ; LU Xiaoting ; SONG Jing
Journal of Preventive Medicine 2025;37(4):382-385,389
Objective:
To investigate the influencing factors for cognitive function among aluminum workers, so as to provide the basis for intervention and prevention of cognitive function among aluminum-exposed populations.
Methods:
From July to August 2019, male aluminum workers in the electrolytic aluminum workshop of an aluminum factory in Shanxi Province were selected using the cluster sampling method. Demographic information, prevalence of chronic diseases, lifestyle behaviors, night shifts, and sleep quality were collected through questionnaire surveys. Blood aluminum levels were measured using inductively coupled plasma-mass spectrometry. Cognitive function was investigated using the Montreal Cognitive Assessment. Factors affecting cognitive function among aluminum workers were analyzed by a quantile regression model.
Results:
A total of 142 aluminum workers were surveyed, including 57 workers aged 20 to <40 years (40.14%) and 85 workers aged 40 to 60 years (59.86%). The median blood aluminum level was 38.23 (interquartile range, 21.82) μg/L. The median cognitive function score was 24.00 (interquartile range, 3.00) points. Quantile regression analysis revealed that older age (βQ5=-0.186, 95%CI: -0.269 to -0.102), lower educational level (βQ5=1.933, 95%CI: 1.029 to 2.838; βQ10=1.743, 95%CI: 0.480 to 3.006; βQ50=1.038, 95%CI: 0.141 to 1.935; βQ75=1.006, 95%CI: 0.437 to 1.575; βQ90=1.111, 95%CI: 0.291 to 1.930), smoking (βQ5=-2.056, 95%CI: -3.264 to -0.849), alcohol consumption (βQ5=-1.821, 95%CI: -3.247 to -0.396) and higher blood aluminum level (βQ5=-0.075, 95%CI: -0.110 to -0.040; βQ10=-0.078, 95%CI: -0.127 to -0.029; βQ50=-0.075, 95%CI: -0.110 to -0.040; βQ75=-0.057, 95%CI: -0.079 to -0.035; βQ90=-0.067, 95%CI: -0.099 to -0.035) were associated with cognitive function decline among aluminum workers.
Conclusions
Educational level and blood aluminum level are the main factors affecting the cognitive function among aluminum workers. Among those with lower cognitive function scores, age, smoking and alcohol consumption are also associated with cognitive function.
9.Differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting in Shandong, China.
Yue WANG ; Xin-Ying MAO ; Yu DING ; Hong-Xia YU ; Zhi-Fang RAN ; Xiao-Li CHEN ; Jie ZHOU
China Journal of Chinese Materia Medica 2025;50(6):1524-1533
In order to compare the differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting, growth indexes, photosynthetic characteristics, soil enzyme activities, secondary metabolite contents, and antioxidant activities of P. quinquefolius under different planting modes were examined and compared, and One-way analysis of variance(ANOVA) and correlation analyses were carried out by using the software SPSS 25.0 and GraphPad Prism 9.5. The Origin 2021 software was used for plotting. The results showed that compared with those under field planting, the plant height, leaf length, leaf width, photosynthetic rate, and chlorophyll content of P. quinquefolius under understory planting were significantly reduced, and arbuscular mycorrhizal fungi(AMF) infestation rate and infestation intensity, ginsenoside content, and antioxidant activity were significantly increased. The activities of inter-root soil urease, sucrase, and catalase increased, while the activities of non-inter-root soil urease and alkaline phosphatase increased. Correlation analyses showed that the plant height and leaf length of P. quinquefolius plant were significantly positively correlated with net photosynthetic rate, transpiration rate, chlorophyll content, and electron transfer rate(P<0.05), while ginsenoside content was significantly negatively correlated with net photosynthetic rate, chlorophyll content, and electron transfer rate(P<0.05) and significantly positively correlated with AMF infestation rate and infestation intensity(P<0.05). In addition, ginsenoside content was significantly positively correlated with the activities of inter-root soil sucrase, urease, and catalase(P<0.05). This study provides basic data for revealing the mechanism of secondary metabolite accumulation in P. quinquefolius under understory planting and for exploring and practicing the ecological mode of P. quinquefolius under understory planting.
Panax/microbiology*
;
China
;
Secondary Metabolism
;
Soil/chemistry*
;
Photosynthesis
;
Plant Leaves/metabolism*
;
Chlorophyll/metabolism*
;
Mycorrhizae
10.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*


Result Analysis
Print
Save
E-mail