1.Yimei Baijiang Formula Treats Colitis-associated Colorectal Cancer in Mice via NF-κB Signaling Pathway
Qian WU ; Xin ZOU ; Chaoli JIANG ; Long ZHAO ; Hui CHEN ; Li LI ; Zhi LI ; Jianqin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):119-130
ObjectiveTo explore the effects of Yimei Baijiang formula (YMBJF) on colitis-associated colorectal cancer (CAC) and the nuclear factor kappaB (NF-κB) signaling pathway in mice. MethodsSixty male Balb/c mice of 4-6 weeks old were randomized into 6 groups: Normal, model, capecitabine (0.83 g
2.Yimei Baijiang Formula Treats Colitis-associated Colorectal Cancer in Mice via NF-κB Signaling Pathway
Qian WU ; Xin ZOU ; Chaoli JIANG ; Long ZHAO ; Hui CHEN ; Li LI ; Zhi LI ; Jianqin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):119-130
ObjectiveTo explore the effects of Yimei Baijiang formula (YMBJF) on colitis-associated colorectal cancer (CAC) and the nuclear factor kappaB (NF-κB) signaling pathway in mice. MethodsSixty male Balb/c mice of 4-6 weeks old were randomized into 6 groups: Normal, model, capecitabine (0.83 g
3.Polysaccharide extract PCP1 from Polygonatum cyrtonema ameliorates cerebral ischemia-reperfusion injury in rats by inhibiting TLR4/NLRP3 pathway.
Xin ZHAN ; Zi-Xu LI ; Zhu YANG ; Jie YU ; Wen CAO ; Zhen-Dong WU ; Jiang-Ping WU ; Qiu-Yue LYU ; Hui CHE ; Guo-Dong WANG ; Jun HAN
China Journal of Chinese Materia Medica 2025;50(9):2450-2460
This study aims to investigate the protective effects and mechanisms of polysaccharide extract PCP1 from Polygonatum cyrtonema in ameliorating cerebral ischemia-reperfusion(I/R) injury in rats through modulation of the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. In vivo, SD rats were randomly divided into the sham group, model group, PCP1 group, nimodipine(NMDP) group, and TLR4 signaling inhibitor(TAK-242) group. A middle cerebral artery occlusion/reperfusion(MCAO/R) model was established, and neurological deficit scores and infarct size were evaluated 24 hours after reperfusion. Hematoxylin-eosin(HE) and Nissl staining were used to observe pathological changes in ischemic brain tissue. Transmission electron microscopy(TEM) assessed ultrastructural damage in cortical neurons. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and nitric oxide(NO) in serum. Immunofluorescence was used to analyze the expression of TLR4 and NLRP3 proteins. In vitro, a BV2 microglial cell oxygen-glucose deprivation/reperfusion(OGD/R) model was established, and cells were divided into the control, OGD/R, PCP1, TAK-242, and PCP1 + TLR4 activator lipopolysaccharide(LPS) groups. The CCK-8 assay evaluated BV2 cell viability, and ELISA determined NO release. Western blot was used to analyze the expression of TLR4, NLRP3, and downstream pathway-related proteins. The results indicated that, compared with the model group, PCP1 significantly reduced neurological deficit scores, infarct size, ischemic tissue pathology, cortical cell damage, and the levels of inflammatory factors IL-1β, IL-6, IL-18, TNF-α, and NO(P<0.01). It also elevated IL-10 levels(P<0.01) and decreased the expression of TLR4 and NLRP3 proteins(P<0.05, P<0.01). Moreover, in vitro results showed that, compared with the OGD/R group, PCP1 significantly improved BV2 cell viability(P<0.05, P<0.01), reduced cell NO levels induced by OGD/R(P<0.01), and inhibited the expression of TLR4-related inflammatory pathway proteins, including TLR4, myeloid differentiation factor 88(MyD88), tumor necrosis factor receptor-associated factor 6(TRAF6), phosphorylated nuclear factor-kappaB dimer RelA(p-p65)/nuclear factor-kappaB dimer RelA(p65), NLRP3, cleaved-caspase-1, apoptosis-associated speck-like protein(ASC), GSDMD-N, IL-1β, and IL-18(P<0.05, P<0.01). The protective effects of PCP1 were reversed by LPS stimulation. In conclusion, PCP1 ameliorates cerebral I/R injury by modulating the TLR4/NLRP3 signaling pathway, exerting anti-inflammatory and anti-pyroptotic effects.
Animals
;
Toll-Like Receptor 4/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Reperfusion Injury/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Polysaccharides/isolation & purification*
;
Polygonatum/chemistry*
;
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Humans
4.Erratum: Author Correction: Targeting of AUF1 to vascular endothelial cells as a novel anti-aging therapy.
Jian HE ; Ya-Feng JIANG ; Liu LIANG ; Du-Jin WANG ; Wen-Xin WEI ; Pan-Pan JI ; Yao-Chan HUANG ; Hui SONG ; Xiao-Ling LU ; Yong-Xiang ZHAO
Journal of Geriatric Cardiology 2025;22(9):834-834
[This corrects the article DOI: 10.11909/j.issn.1671-5411.2017.08.005.].
5.Effectiveness of Xuanshen Yishen Decoction on Intensive Blood Pressure Control: Emulation of a Randomized Target Trial Using Real-World Data.
Xiao-Jie WANG ; Yuan-Long HU ; Jia-Ming HUAN ; Shi-Bing LIANG ; Lai-Yun XIN ; Feng JIANG ; Zhen HUA ; Zhen-Yuan WANG ; Ling-Hui KONG ; Qi-Biao WU ; Yun-Lun LI
Chinese journal of integrative medicine 2025;31(8):677-684
OBJECTIVE:
To investigate the effectiveness of Xuanshen Yishen Decoction (XYD) in the treatment of hypertension.
METHODS:
Hospital electronic medical records from 2019-2023 were utilized to emulate a randomized pragmatic clinical trial. Hypertensive participants were eligible if they were aged ⩾40 years with baseline systolic blood pressure (BP) ⩾140 mm Hg. Patients treated with XYD plus antihypertensive regimen were assigned to the treatment group, whereas those who followed only antihypertensive regimen were assigned to the control group. The primary outcome assessed was the attainment rate of intensive BP control at discharge, with the secondary outcome focusing on the 6-month all-cause readmission rate.
RESULTS:
The study included 3,302 patients, comprising 2,943 individuals in the control group and 359 in the treatment group. Compared with the control group, a higher proportion in the treatment group achieved the target BP for intensive BP control [8.09% vs. 17.5%; odds ratio (OR)=2.29, 95% confidence interval (CI)=1.68 to 3.13; P<0.001], particularly in individuals with high homocysteine levels (OR=3.13; 95% CI=1.72 to 5.71; P<0.001; P for interaction=0.041). Furthermore, the 6-month all-cause readmission rate in the treatment group was lower than in the control group (hazard ratio=0.58; 95% CI=0.36 to 0.91; P=0.019), and the robustness of the results was confirmed by sensitivity analyse.
CONCLUSIONS
XYD could be a complementary therapy for intensive BP control. Our study offers real-world evidence and guides the choice of complementary and alternative therapies. (Registration No. ChiCTR2400086589).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Antihypertensive Agents/pharmacology*
;
Blood Pressure/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Hypertension/physiopathology*
;
Patient Readmission
;
Treatment Outcome
6.Pseudolaric Acid B Alleviates Non-alcoholic Fatty Liver Disease by Targeting PPARα to Regulate Lipid Metabolism and Promote Mitochondrial Biogenesis.
Shu-Yan LIU ; Xiao-Wei ZHANG ; Gai GAO ; Chang-Xin LIU ; Hui CHEN ; Zhong-Xue FU ; Jiang-Yan XU ; Zhen-Zhen WANG ; Zhen-Qiang ZHANG ; Zhi-Shen XIE
Chinese journal of integrative medicine 2025;31(10):877-888
OBJECTIVE:
To investigate the therapeutic potential of pseudolaric acid B (PAB) on non-alcoholic fatty liver disease (NAFLD) and its underlying molecular mechanism in vitro and in vivo.
METHODS:
Eight-week-old male C57BL/6J mice (n=32) were fed either a normal chow diet (NCD) or a high-fat diet (HFD) for 8 weeks. The HFD mice were divided into 3 groups according to a simple random method, including HFD, PAB low-dose [10 mg/(kg·d), PAB-L], and PAB high-dose [20 mg/(kg·d), PAB-H] groups. After 8 weeks of treatment, glucose metabolism and insulin resistance were assessed by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). Biochemical assays were used to measure the serum and cellular levels of total cholesterol (TC), triglycerides (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). White adipose tissue (WAT), brown adipose tissue (BAT) and liver tissue were subjected to hematoxylin and eosin (H&E) staining or Oil Red O staining to observe the alterations in adipose tissue and liver injury. PharmMapper and DisGeNet were used to predict the NAFLD-related PAB targets. Peroxisome proliferator-activated receptor alpha (PPARα) pathway involvement was suggested by Kyoto Encyclopedia of Genes and Genomes (KEGG) and search tool Retrieval of Interacting Genes (STRING) analyses. Luciferase reporter assay, cellular thermal shift assay (CETSA), and drug affinity responsive target stability assay (DARTS) were conducted to confirm direct binding of PAB with PPARα. Molecular dynamics simulations were applied to further validate target engagement. RT-qPCR and Western blot were performed to assess the downstream genes and proteins expression, and validated by PPARα inhibitor MK886.
RESULTS:
PAB significantly reduced serum TC, TG, LDL-C, AST, and ALT levels, and increased HDL-C level in HFD mice (P<0.01). Target prediction analysis indicated a significant correlation between PAB and PPARα pathway. PAB direct target binding with PPARα was confirmed through luciferase reporter assay, CETSA, and DARTS (P<0.05 or P<0.01). The target engagement between PAB and PPARα protein was further confirmed by molecular dynamics simulations and the top 3 amino acid residues, LEU321, MET355, and PHE273 showed the most significant changes in mutational energy. Subsequently, PAB upregulated the genes expressions involved in lipid metabolism and mitochondrial biogenesis downstream of PPARα (P<0.05 or P<0.01). Significantly, the PPARα inhibitor MK886 effectively reversed the lipid-lowering and PPARα activation properties of PAB (P<0.05 or P<0.01).
CONCLUSION
PAB mitigates lipid accumulation, ameliorates liver damage, and improves mitochondrial biogenesis by binding with PPARα, thus presenting a potential candidate for pharmaceutical development in the treatment of NAFLD.
Animals
;
PPAR alpha/metabolism*
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Male
;
Mice, Inbred C57BL
;
Lipid Metabolism/drug effects*
;
Diterpenes/therapeutic use*
;
Organelle Biogenesis
;
Diet, High-Fat
;
Humans
;
Mice
;
Liver/metabolism*
;
Insulin Resistance
;
Mitochondria/metabolism*
;
Molecular Docking Simulation
7.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
8.Real-world efficacy and safety of azvudine in hospitalized older patients with COVID-19 during the omicron wave in China: A retrospective cohort study.
Yuanchao ZHU ; Fei ZHAO ; Yubing ZHU ; Xingang LI ; Deshi DONG ; Bolin ZHU ; Jianchun LI ; Xin HU ; Zinan ZHAO ; Wenfeng XU ; Yang JV ; Dandan WANG ; Yingming ZHENG ; Yiwen DONG ; Lu LI ; Shilei YANG ; Zhiyuan TENG ; Ling LU ; Jingwei ZHU ; Linzhe DU ; Yunxin LIU ; Lechuan JIA ; Qiujv ZHANG ; Hui MA ; Ana ZHAO ; Hongliu JIANG ; Xin XU ; Jinli WANG ; Xuping QIAN ; Wei ZHANG ; Tingting ZHENG ; Chunxia YANG ; Xuguang CHEN ; Kun LIU ; Huanhuan JIANG ; Dongxiang QU ; Jia SONG ; Hua CHENG ; Wenfang SUN ; Hanqiu ZHAN ; Xiao LI ; Yafeng WANG ; Aixia WANG ; Li LIU ; Lihua YANG ; Nan ZHANG ; Shumin CHEN ; Jingjing MA ; Wei LIU ; Xiaoxiang DU ; Meiqin ZHENG ; Liyan WAN ; Guangqing DU ; Hangmei LIU ; Pengfei JIN
Acta Pharmaceutica Sinica B 2025;15(1):123-132
Debates persist regarding the efficacy and safety of azvudine, particularly its real-world outcomes. This study involved patients aged ≥60 years who were admitted to 25 hospitals in mainland China with confirmed SARS-CoV-2 infection between December 1, 2022, and February 28, 2023. Efficacy outcomes were all-cause mortality during hospitalization, the proportion of patients discharged with recovery, time to nucleic acid-negative conversion (T NANC), time to symptom improvement (T SI), and time of hospital stay (T HS). Safety was also assessed. Among the 5884 participants identified, 1999 received azvudine, and 1999 matched controls were included after exclusion and propensity score matching. Azvudine recipients exhibited lower all-cause mortality compared with controls in the overall population (13.3% vs. 17.1%, RR, 0.78; 95% CI, 0.67-0.90; P = 0.001) and in the severe subgroup (25.7% vs. 33.7%; RR, 0.76; 95% CI, 0.66-0.88; P < 0.001). A higher proportion of patients discharged with recovery, and a shorter T NANC were associated with azvudine recipients, especially in the severe subgroup. The incidence of adverse events in azvudine recipients was comparable to that in the control group (2.3% vs. 1.7%, P = 0.170). In conclusion, azvudine showed efficacy and safety in older patients hospitalized with COVID-19 during the SARS-CoV-2 omicron wave in China.
9.Enhanced radiotheranostic targeting of integrin α5β1 with PEGylation-enabled peptide multidisplay platform (PEGibody): A strategy for prolonged tumor retention with fast blood clearance.
Siqi ZHANG ; Xiaohui MA ; Jiang WU ; Jieting SHEN ; Yuntao SHI ; Xingkai WANG ; Lin XIE ; Xiaona SUN ; Yuxuan WU ; Hao TIAN ; Xin GAO ; Xueyao CHEN ; Hongyi HUANG ; Lu CHEN ; Xuekai SONG ; Qichen HU ; Hailong ZHANG ; Feng WANG ; Zhao-Hui JIN ; Ming-Rong ZHANG ; Rui WANG ; Kuan HU
Acta Pharmaceutica Sinica B 2025;15(2):692-706
Peptide-based radiopharmaceuticals targeting integrin α5β1 show promise for precise tumor diagnosis and treatment. However, current peptide-based radioligands that target α5β1 demonstrate inadequate in vivo performance owing to limited tumor retention. The use of PEGylation to enhance the tumor retention of radiopharmaceuticals by prolonging blood circulation time poses a risk of increased blood toxicity. Therefore, a PEGylation strategy that boosts tumor retention while minimizing blood circulation time is urgently needed. Here, we developed a PEGylation-enabled peptide multidisplay platform (PEGibody) for PR_b, an α5β1 targeting peptide. PEGibody generation involved PEGylation and self-assembly. [64Cu]QM-2303 PEGibodies displayed spherical nanoparticles ranging from 100 to 200 nm in diameter. Compared with non-PEGylated radioligands, [64Cu]QM-2303 demonstrated enhanced tumor retention time due to increased binding affinity and stability. Importantly, the biodistribution analysis confirmed rapid clearance of [64Cu]QM-2303 from the bloodstream. Administration of a single dose of [177Lu]QM-2303 led to robust antitumor efficacy. Furthermore, [64Cu]/[177Lu]QM-2303 exhibited low hematological and organ toxicity in both healthy and tumor-bearing mice. Therefore, this study presents a PEGibody-based radiotheranostic approach that enhances tumor retention time and provides long-lasting antitumor effects without prolonging blood circulation lifetime. The PEGibody-based radiopharmaceutical [64Cu]/[177Lu]QM-2303 shows great potential for positron emission tomography imaging-guided targeted radionuclide therapy for α5β1-overexpressing tumors.
10.Strychni Semen and its active compounds promote axon regeneration following peripheral nerve injury by suppressing myeloperoxidase in the dorsal root ganglia.
Yan ZHANG ; Xin-Yue ZHAO ; Meng-Ting LIU ; Zhu-Chen ZHOU ; Hui-Bin CHENG ; Xu-Hong JIANG ; Yan-Rong ZHENG ; Zhong CHEN
Journal of Integrative Medicine 2025;23(2):169-181
OBJECTIVE:
Treating peripheral nerve injury (PNI) presents a clinical challenge due to limited axon regeneration. Strychni Semen, a traditional Chinese medicine, is clinically used for numbness and hemiplegia. However, its role in promoting functional recovery after PNI and the related mechanisms have not yet been systematically studied.
METHODS:
A mouse model of sciatic nerve crush (SNC) injury was established and the mice received drug treatment via intragastric gavage, followed by behavioral assessments (adhesive removal test, hot-plate test and Von Frey test). Transcriptomic analyses were performed to examine gene expression in the dorsal root ganglia (DRGs) from the third to the sixth lumbar vertebrae, so as to identify the significantly differentially expressed genes. Immunofluorescence staining was used to assess the expression levels of superior cervical ganglia neural-specific 10 protein (SCG10). The ultra-trace protein detection technique was used to evaluate changes in gene expression levels.
RESULTS:
Strychni Semen and its active compounds (brucine and strychnine) improved functional recovery in mice following SNC injury. Transcriptomic data indicated that Strychni Semen and its active compounds initiated transcriptional reprogramming that impacted cellular morphology and extracellular matrix remodeling in DRGs after SNC, suggesting potential roles in promoting axon regeneration. Imaging data further confirmed that Strychni Semen and its active compounds facilitated axon regrowth in SNC-injured mice. By integrating protein-protein interaction predictions, ultra-trace protein detection, and molecular docking analysis, we identified myeloperoxidase as a potentially critical factor in the axon regenerative effects conferred by Strychni Semen and its active compounds.
CONCLUSION
Strychni Semen and its active compounds enhance sensory function by promoting axonal regeneration after PNI. These findings establish a foundation for the future applications of Strychni Semen and highlight novel therapeutic strategies and drug targets for axon regeneration. Please cite this article as: Zhang Y, Zhao XY, Liu MT, Zhou ZC, Cheng HB, Jiang XH, Zheng YR, Chen Z. Strychni Semen and its active compounds promote axon regeneration following peripheral nerve injury by suppressing myeloperoxidase in the dorsal root ganglia. J Integr Med. 2025; 23(2): 169-181.
Animals
;
Nerve Regeneration/drug effects*
;
Mice
;
Peripheral Nerve Injuries/physiopathology*
;
Male
;
Ganglia, Spinal/enzymology*
;
Axons/physiology*
;
Peroxidase/antagonists & inhibitors*
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/pharmacology*
;
Disease Models, Animal
;
Strychnine/pharmacology*

Result Analysis
Print
Save
E-mail