1.Gandouling Regulates PI3K/Akt/mTOR Autophagy Signaling Pathway via LncRNA H19 for Treatment of Wilson Disease Liver Fibrosis
Xin YIN ; Han WANG ; Daiping HUA ; Lanting SUN ; Yunyun XU ; Wenming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):131-138
ObjectiveTo investigate the potential mechanisms and pathways through which Gandouling (GDL) exerts its effects in the treatment of liver fibrosis in Wilson disease. MethodsSixty male SD rats were randomly divided into six groups: the normal group, the model group, the GDL low-, medium-, and high-dose groups (0.24, 0.48, 0.96 g·kg-1), and the penicillamine group (90 mg·kg-1), with 10 rats in each group. A copper-loaded Wilson disease rat model was established by gavage administration of 300 mg·kg-1 copper sulfate pentahydrate to all groups except the normal group. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathomorphological changes in the liver. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of hyaluronic acid (HA), laminin (LN), procollagen type-Ⅲ peptide (PC-Ⅲ), and collagen type-Ⅳ (C-Ⅳ). Transmission electron microscopy was used to examine the ultrastructure of liver tissues. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect the expression levels of liver tissues and serum exosomal long noncoding RNA H19 (LncRNA H19), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Western blot analysis was performed to assess the expression levels of PI3K, Akt, mTOR, and their phosphorylated forms, as well as autophagy-related proteins Beclin1 and microtubule-associated protein 1 light chain 3B (LC3-Ⅱ/LC3-Ⅰ) in liver tissues. Beclin1 and LC3-Ⅱ fluorescence signal intensity was observed by immunofluorescence. ResultsCompared with the normal group, the model group exhibited inflammatory cell infiltration in hepatocytes, unclear nuclear boundaries with cell cleavage and necrosis, and collagen fiber deposition around confluent areas. The levels of HA, LN, PC-Ⅲ, and C-Ⅳ were significantly elevated (P<0.01). Transmission electron microscopy revealed an increased number of autophagic vesicles, with autophagic lysosomes exhibiting a single-layer membrane structure following degradation of most envelopes. Expression levels of Beclin1 and LC3-Ⅱ/LC3-Ⅰ were significantly increased (P<0.01), and fluorescence signals of Beclin1 and LC3-Ⅱ were markedly enhanced. The protein expression levels of PI3K, Akt, mTOR, p-PI3K, p-Akt, and p-mTOR were reduced (P<0.01), while LncRNA H19 expression was increased (P<0.01), and mRNA expression levels of PI3K, Akt, and mTOR were decreased (P<0.01). After treatment with GDL, the degree of liver fibrosis was significantly improved, with decreased levels of HA, LN, PC-Ⅲ, and C-Ⅳ. The number of autophagic vesicles was significantly reduced, and expression levels of Beclin1 and LC3-Ⅱ/LC3-Ⅰ proteins were lower (P<0.01). The fluorescence signals of Beclin1 and LC3-Ⅱ weakened dose-dependently. The protein levels of PI3K, Akt, mTOR, p-PI3K, p-Akt, and p-mTOR were elevated (P<0.01), while the expression level of LncRNA H19 was reduced (P<0.01). Furthermore, the mRNA expression levels of PI3K, Akt, and mTOR increased (P<0.05, P<0.01). ConclusionGDL may alleviate liver fibrosis and reduce liver injury by regulating the PI3K/Akt/mTOR autophagy signaling pathway via LncRNA H19.
2.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
3.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
4.Effect of Cinobufacini on HepG2 cells based on CXCL5/FOXD1/VEGF pathway
Xiao-Ke RAN ; Xu-Dong LIU ; Hua-Zhen PANG ; Wei-Qiang TAN ; Tie-Xiong WU ; Zhao-Quan PAN ; Yuan YUAN ; Xin-Feng LOU
Chinese Pharmacological Bulletin 2024;40(12):2361-2368
Aim To investigate the impact of Cinobu-facini on the proliferation,invasion,and apoptosis of HepG2 cells and the underlying mechanism.Methods The proliferation of HepG2 cells was assessed using the CCK-8 method following treatment with Cinobufaci-ni.The invasion capability of HepG2 cells was evalua-ted through Transwell assay after exposure to Cinobufa-cini.The apoptosis rates of HepG2 cells post Cinobufa-cini intervention were measured using flow cytometry,and the expression levels of VEGF in the culture medi-um of HepG2 cells were determined using enzyme-linked immunoassay.Furthermore,qRT-PCR and Western blot analyses were conducted to assess the im-pact of Cinobufacini on mRNA and protein expression levels related to the CXCL5/FOXD1/VEGF pathway.The interaction between CXCL5 and FOXD1 was inves-tigated via co-immunoprecipitation.Results Cinobufa-cini treatment led to a gradual decrease in HepG2 cell viability in a dose-dependent manner compared to the control group(P<0.05).Moreover,Cinobufacini sig-nificantly suppressed HepG2 cell invasion(P<0.05)while enhancing cell apoptosis(P<0.05).Notably,Cinobufacini exhibited inhibitory effects on the CX-CL5/FOXD1/VEGF pathway,as evidenced by re-duced expression of related mRNA and proteins(P<0.05).FOXD1 was identified as the binding site of CXCL5.Overexpression of CXCL5 resulted in in-creased proliferation and VEGF secretion by HepG2 cells(P<0.05),and increased expression of FOXD1 and VEGF(P<0.05).However,Cinobufacini inter-vention effectively inhibited liver cancer cell prolifera-tion and invasion(P<0.05),promoted apoptosis(P<0.05),reduced VEGF secretion by HepG2 cells(P<0.05),and downregulated the expression of CXCL5 and FOXD1 in HepG2 cells(P<0.05);but com-pared with the unexpressed group of Cinobufacini,its ability to inhibit cell activity was weakened(P<0.05),and its ability to inhibit the expression of CX-CL5,FOXD1,and VEGF was weakened(P<0.05).Conclusion Cinobufacini may inhibit HepG2 cell pro-liferation and invasion and promote HepG2 cell apopto-sis by regulating the CXCL5/FOXD1/VEGF pathway.
5.Correlation between the expression of TLR4 and CHI3L1 in colon cancer tissue and the prognosis after radical surgery
Chun-Guang SONG ; Zhi-Xin NIU ; Feng HE ; Xi-Ming XU ; Chun-Hua YUE
Journal of Regional Anatomy and Operative Surgery 2024;33(10):863-867
Objective To investigate the correlation between the expression of Toll-like receptor 4(TLR4)and chitosanase 3-like protein 1(CHI3L1)in colon cancer tissue and the prognosis of patients after radical surgery.Methods A total of 152 patients who underwent radical colon cancer surgery in our hospital from January 2017 to May 2018 were collected and divided into the good prognosis group(n=97)and the poor prognosis group(n=47)according to the 5-year survival status after surgery.Immunohistochemical staining was applied to detect the expression levels of TLR4 and CHI3L1 in colon cancer tissues and adjacent tissues;the correlation between the expression of TLR4 and CHI3L1 in colon cancer tissue and the prognosis of patients was analyzed,and the influencing factors for prognosis of colon cancer patients were analyzed.Results The positive expression rates of TLR4 and CHI3L1 in colon cancer tissues were obviously higher than those in adjacent tissues(P<0.05).The expression of TLR4 in colon cancer tissue was related to the degree of tumor differentiation,clinical staging,and lymph node metastasis of colon cancer patients(P<0.05),the expression of CHI3L1 was related to the tumor diameter,degree of tumor differentiation,clinical staging,and lymph node metastasis of colon cancer patients(P<0.05).Compared with the good prognosis group,the poor prognosis group had higher proportions of patients with poorly differentiated tumor,clinical stageⅢ,lymph node metastasis,and positive expression of TLR4 and CHI3L1(P<0.05).The 5-year survival rate of patient with TLR4 positive expression was 60.38%,which was lower than that of 86.84% of patients with TLR4 negative expression(χ2=9.104,P<0.05);the 5-year survival rate of patients with CHI3L1 positive expression was 58.06%,which was lower than that of 84.31% of patients with CHI3L1 negative expression(χ2=10.935,P<0.05).The positive expression of TLR4 and CHI3L1,poorly differentiated tumor,clinical stage Ⅲ,and lymph node metastasis were the independent risk factors for the prognosis of colon cancer patients(P<0.05).Conclusion TLR4 and CHI3L1 are related to the occurrence and clinicopathological features of colon cancer,and the positive expression of TLR4 and CHI3L1 in colon cancer tissues is not conducive to the prognosis of patients,so both of them are expected to become clinical treatment targets.
6.Clinical characteristics of patients with MitraClip operation and predictors for the occurrence of afterload mismatch
Xiao-Dong ZHUANG ; Han WEN ; Ri-Hua HUANG ; Xing-Hao XU ; Shao-Zhao ZHANG ; Zhen-Yu XIONG ; Xin-Xue LIAO
Chinese Journal of Interventional Cardiology 2024;32(10):562-568
Objective To explore the risk factors related to afterload mismatch(AM)after transcatheter mitral valve repair(MitraClip).Methods This was a retrospective cohort study.48 patients hospitalized in the Department of Cardiovascular Medicine,the First Affiliated Hospital of Sun Yat-sen University from December 2021 to December 2023,who underwent MitraClip due to severe mitral regurgitation(MR)were included.Preoperative clinical data,laboratory tests,and preoperative and postoperative color Doppler echocardiographic examination results of surgical patients were collected.AM was defined as the left ventricular ejection fraction(LVEF)decreased by 15%or more after surgery compared with the one before(dLVEF≤-15%).Patients were divided into AM group and non-AM group according to whether afterload mismatch occurred.Univariate and multivariate logistic regression were used to analyze the risk factors of postoperative AM.Results Among 48 patients who underwent MitraClip,14 of them(29.2%)developed afterload-mismatched.For those without AM,their overall LVEF was improved after the operation;for patients in both AM group and non-AM group,their overall left ventricular end-diastolic diameter(LVEDd),left ventricular end-diastolic diameter volume index(LVEDVi)was reduced compared with the preoperative ones.Univariate regression analysis showed that C-reactive protein levels(OR 1.98,95%CI 1.02-3.83),platelets(OR 2.22,95%CI 1.08-4.53),systemic immune inflammation index(OR 1.96,95%CI 1.03-3.71)were associated with an increased risk of AM in patients undergoing MitraClip(all P<0.05),while those with larger right atrial diameter(OR 0.35,95%CI 0.13-0.93)or moderate to severe tricuspid regurgitation(OR 0.19,95%CI 0.05-0.81)were less likely to develop into AM(both P<0.05),which is still satisfied after adjustment.Conclusions For patients who underwent MitraClip,C-reactive protein levels,platelets and systemic immune inflammation index(SII)are associated with an increased risk of afterload mismatched,while those with larger right atrial diameter or moderate to severe tricuspid regurgitation were less likely to develop into AM.
7.Cavitation as a risk factor for treatment failure in patients with Mycobacterium avium infection
Xin ZOU ; Meng-Xing LUO ; Lu-Lu CHEN ; Yu-Yan XU ; Zhong-Hua LIU
Chinese Journal of Zoonoses 2024;40(5):483-488
This study investigated the risk factors for treatment failure in patients with a single infection of Mycobacterium avium.Patients with Mycobacterium avium infection meeting the guidelines for diagnosis and treatment of non-tuberculous mycobacteriosis between January 2016 and December 2020 at Shanghai Pulmonary Hospital were included.A logistic regression model was used to analyze the risk factors for treatment failure.A total of 26(49%)of 53 patients with Mycobacterium avium infection included in the study had treatment failure.A higher proportion of patients with fever,anemia,and lung cavitation in the treatment failure group had significantly higher neutrophils and direct bilirubin,and significantly lower prealbumin.Multi-factorial logistic regression demonstrated that cavitation was an independent risk factor for treatment failure in patients with Mycobacterium avium infection,and Kaplan-Meier analysis indicated significantly lower cumulative 12-month cure rates in pa-tients with cavitation.Patients with Mycobacterium avium infection had a higher rate of treatment failure,and cavitation was found to be a risk factor for treatment failure.Our findings suggest that clinicians should pay attention to the monitoring and treatment of patients with Mycobacterium avium pulmonary cavities to improve the cure rate among patients.
8.Perilla AP2 Gene Family PfWRI1 Promotes Oil Accumulation in Plant Seeds
Xiao-Yan FENG ; Qi-Feng WANG ; Ke-Xin YUE ; Fu-Peng HOU ; Hua-Xiang XU ; Jun-Xing LU ; Jian HU ; Tao ZHANG
Chinese Journal of Biochemistry and Molecular Biology 2024;40(8):1161-1172
AP2 transcription factors belong to the AP2/ERF superfamily and are involved in the regula-tion of various biological processes in plant growth and development,as well as in response to biotic and abiotic stresses.However,studies on the AP2 transcription factor family of Perilla frutescens have not been reported.In this study,totally 18 AP2 family members were identified from the Perilla frutescens ge-nome and analyzed for gene structure,conserved motifs,and cis-acting elements using bioinformatics.WRINKLED1(WRI1)is a key regulator of lipid biosynthesis in many plant species and plays an impor-tant role in the regulation of lipid synthesis.Sequence comparison revealed that one member of WRI1 is highly homologous to AtWRI1 and contains two conserved AP2 domains,named PfWRI1.The expression levels of PfAP2 family genes were analyzed in different tissues of Perilla frutescens and at different stages of seed development in conjunction with the transcriptome data,and the results showed that PfWRI1 is highly expressed only in the seeds of Perilla frutescens,suggesting that PfWRI1 may be related to the de-velopmental process of the seeds.The overexpression vector of plant pCAMBIA1303-PfWRI1 was con-structed,and wild-type(Col)and mutant(wri1-1)Arabidopsis thaliana were transformed by Agrobacte-rium tumefaciens to obtain overexpression and complementation lines,respectively.The results showed that the expression of P fWRI1 led to an increase in oil content of Arabidopsis seeds by 8.90%-13.57%compared with Col,and promoted the accumulation of oleic acid(C18:1)and linoleic acid(18:2)and reduced the accumulation of palmitic acid(C16:0),arachidonic acid(C20:0),and cis-11-Eicosenoic acid(C20:1)in transgenic Arabidopsis seeds.In addition,PfWRI1 gene expression increased the ex-pression of glycolysis and fatty acid biosynthesis-related genes AtPKP-α,AtPKP-β1,AtBCCP2,AtSUS2,and AtLIP1.Taken together,PfWRI1 may promote lipid accumulation by increasing unsaturated fatty acid content through interaction with the above genes.
9.In Vitro Amplification of NK Cells from Feeder Layer Cells Expressing IL-21
Zhen-Zhao XU ; Xue-Hua ZHANG ; Ling-Ping ZHAO ; Gao-Hua LI ; Tian-Tian CUI ; Xiao-Ling WANG ; Xuan LI ; Ru-Ge ZANG ; Wen YUE ; Ya-Nan WANG ; Guo-Xin LI ; Jia-Fei XI
Journal of Experimental Hematology 2024;32(5):1578-1584
Objective:To investigate the effect of feeder layer cells expressing interleukin(IL)-21 on the amplification of NK cells in vitro.Methods:The K562 cell line with IL-21 expression on its membrane was constructed by electroporation,and co-cultured with NK cells after inactivation.The proliferation of NK cells was observed.The killing function of the amplified NK cells in vitro was evaluated by the lactate dehydrogenase(LDH)and interferon-γ(IFN-y)release assay.A colorectal cancer xenograft model in NOD/SCID mice was established,and a blank control group,a NK cell group and an amplified NK cell group were set up to detect the tumor killing effect of amplified NK cells in vivo.Results:K562 cells expressing IL-21 on the membrane were successfully constructed by electroporation.After co-culturing with K562 cells expressing IL-21 on the membrane for 17 days,the NK cells increased to 700 times,which showed an enhanced amplification ability compared with control group(P<0.001).In the tumor cell killing experiment in vitro,there was no significant difference in the killing activity on tumor cells between NK cells and amplified NK cells,and there was also no significant difference in mice in vivo.Conclusion:K562 cells expressing IL-21 on the membrane can significantly increase the amplification ability of NK cells in vitro,but do not affect the killing function of NK cells in vitro and in vivo.It can be used for the subsequent large-scale production of NK cells in vitro.
10.Protective Effect of Endogenous ω-3 Polyunsaturated Fatty Acid Against Cisplatin-Induced Myelosuppression
Qi-Hua XU ; Zong-Meng ZHANG ; Chao-Feng XING ; Han-Si CHEN ; Ke-Xin ZHENG ; Yun-Ping MU ; Zi-Jian ZHAO ; Fang-Hong LI
Journal of Experimental Hematology 2024;32(5):1601-1607
Objective:To investigate the protective effect of endogenous ω-3 polyunsaturated fatty acid(PUFA)against cisplatin-induced myelosuppression and the mechanism of reducing apoptosis in bone marrow nucleated cells using mfat-1 transgenic mice.Methods:The experimental animals were divided into 4 groups:wild-type mice normal control group,mfat-1 transgenic mice normal control group,wild-type mice model group and mfat-1 transgenic mice model group.The mice in the model group were injected intraperitoneally with 7.5 mg/kg cisplatin on day 0 and day 7 to construct a myelosuppression model,while the mice in the normal control group were injected intraperitoneally with an equal amount of saline,and their status was observed and their body weight was measured daily.Peripheral blood was taken after 14 day for routine blood analysis,and the content and proportion of PUFA in peripheral blood were detected using gas chromatography.Bone marrow nucleated cells in the femur of mice were counted.The histopathological changes in bone marrow were observed by histopathological staining.The apoptosis of nucleated cells and the expression level changes of apoptosis-related genes in the bone marrow of mice were detected by flow cytometry and fluorescence quantitative PCR.Results:Compared with wild-type mice,mfat-1 transgenic mice showed significantly increased levels of ω-3 PUFA in peripheral blood and greater tolerance to cisplatin.Peripheral blood analysis showed that endogenous ω-3 PUFA promoted the recovery of leukocytes,erythrocytes,platelets and haemoglobin in peripheral blood of myelosuppressed mice.The results of HE staining showed that endogenous ω-3 PUFA significantly improved the structural damage of bone marrow tissue induced by cisplatin.Flow cytometry and PCR showed that,compared with wild-type mice model group,the apoptosis rate of bone marrow nucleated cells in mfat-1 transgenic mice was significantly reduced(P<0.001),and the expression of anti-apoptotic genes Bcl-2 mRNA was significantly increased(P<0.01),while the expressions of pro-apoptotic genes Bax and Bak mRNA were significantly reduced(P<0.001,P<0.05).Conclusion:Endogenous ω-3 PUFA can reduce cisplatin-induced apoptosis in bone marrow nucleated cells,increase the number of peripheral blood cells and exert a protective effect against cisplatin-induced myelosuppression by regulating the expression of apoptosis-related genes.

Result Analysis
Print
Save
E-mail