1.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
2.Chemical constituents of butyl-phthalides from Ligusticum sinense.
Hang LIU ; Xue-Ming ZHOU ; Ting ZHENG ; Mei-Zhu WU ; Shuo FENG ; Ye LIN ; Xin-Ming SONG ; Ji-Ling YI
China Journal of Chinese Materia Medica 2025;50(2):439-443
Eight butyl-phthalides, senkyunolide K(1), senkyunolide N(2), butylphthalide(3), senkyunolide I(4), senkyunolide H(5),(Z)-butylidenephthalide(6),(Z)-ligustilide(7), and 3-butylidene-7-hydroxyphthalide(8) were isolated from the aerial part of Ligusticum sinense by column chromatography on silica gel column, ODS, Sephadex LH-20 and semi-preparative HPLC. Their structures were elucidated on the basis of spectroscopic and chemical data, especially NMR and MS. Compound 1 was a new butyl-phthalide and compounds 2-8 were isolated from the aerial part of L. sinense for the first time. Furthermore, the inhibitory activities of compounds 1-8 against the nitric oxide(NO) production induced by lipopolysaccharide(LPS) in mouse RAW264.7 macrophages in vitro were evaluated. The results showed that compounds 1-8 exerted inhibitory activities on NO production with IC_(50) of 19.34-42.16 μmol·L~(-1).
Animals
;
Mice
;
Nitric Oxide/biosynthesis*
;
Ligusticum/chemistry*
;
Benzofurans/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Macrophages/immunology*
;
RAW 264.7 Cells
;
Molecular Structure
3.Medication rules of Astragali Radix in ancient Chinese medical books based on "disease-medicine-dose" pattern.
Jia-Lei CAO ; Lü-Yuan LIANG ; Yi-Hang LIU ; Zi-Ming XU ; Xuan WANG ; Wen-Xi WEI ; He-Jia WAN ; Xing-Hang LYU ; Wei-Xiao LI ; Yu-Xin ZHANG ; Bing-Qi WEI ; Xian-Qing REN
China Journal of Chinese Materia Medica 2025;50(3):798-811
This study employed the "disease-medicine-dose" pattern to mine the medication rules of traditional Chinese medicine(TCM) prescriptions containing Astragali Radix in ancient Chinese medical books, aiming to provide a scientific basis for the clinical application of Astragali Radix and the development of new medicines. The TCM prescriptions containing Astragali Radix were retrieved from databases such as Chinese Medical Dictionary and imported into Excel 2020 to construct the prescription library. Statical analysis were performed for the prescriptions regarding the indications, syndromes, medicine use frequency, herb effects, nature and taste, meridian tropism, dosage forms, and dose. SPSS statistics 26.0 and IBM SPSS Modeler 18.0 were used for association rules analysis and cluster analysis. A total of 2 297 prescriptions containing Astragali Radix were collected, involving 233 indications, among which sore and ulcer, consumptive disease, sweating disorder, and apoplexy had high frequency(>25), and their syndromes were mainly Qi and blood deficiency, Qi and blood deficiency, Yin and Yang deficiency, and Qi deficiency and collateral obstruction, respectively. In the prescriptions, 98 medicines were used with the frequency >25 and they mainly included Qi-tonifying medicines and blood-tonifying medicines. Glycyrrhizae Radix et Rhizoma, Angelicae Sinensis Radix, Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, and Citri Reticulatae Pericarpium were frequently used. The medicines with high frequency mainly have warm or cold nature, and sweet, pungent, or bitter taste, with tropism to spleen, lung, heart, liver, and kidney meridians. In the treatment of sore and ulcer, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to promote granulation and heal up sores. In the treatment of consumptive disease, Astragali Radix was mainly used with the dose of 37.30 g and combined with Ginseng Radix et Rhizoma to tonify deficiency and replenish Qi. In the treatment of sweating disorder, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to consolidate exterior and stop sweating. In the treatment of apoplexy, Astragali Radix was mainly used with the dose of 7.46 g and combined with Glycyrrhizae Radix et Rhizoma to dispell wind and stop convulsions. Astragali Radix can be used in the treatment of multiple system diseases, with the effects of tonifying Qi and ascending Yang, consolidating exterior and stopping sweating, and expressing toxin and promoting granulation. According to the manifestations of different diseases, when combined with other medicines, Astragali Radix was endowed with the effects of promoting granulation and healing up sores, tonifying deficiency and Qi, consolidating exterior and stopping sweating, and dispelling wind and replenishing Qi. The findings provide a theoretical reference and a scientific basis for the clinical application of Astragali Radix and the development of new medicines.
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, Ancient
;
Astragalus Plant/chemistry*
;
China
;
Astragalus propinquus
4.Non-pharmacological interventions in chronic prostatitis/chronic pelvic pain syndrome: A network meta-analysis.
Xiao-Hui WEI ; Meng-Yao MA ; Hang SU ; Tong HU ; Yu-Xin ZHAO ; Xing-Chao LIU ; Hong-Yan BI
National Journal of Andrology 2025;31(3):234-245
OBJECTIVE:
To evaluate the efficacy of shockwave therapy, acupuncture, hyperthermia, biofeedback therapy, electrical nerve stimulation, magnetotherapy and ultrasound therapy in the treatment of chronic prostatitis/chronic pelvic pain syndrome(CP/CPPS), and to provide evidence-based support for clinical decision-making.
METHODS:
Two researchers independently searched PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang, VIP and Chinese Biomedical Literature databases for randomized controlled trials(RCTs) on the effects of different interventions on CP/CPPS from the establishment of the databases to August 2024. We evaluated the quality of the included literature and extracted the relevant data according to the Cochrane Handbook for Systematic Reviews of Interventions, followed by network meta-analysis using Revman 5.3, R 4.33 and Stata17 software.
RESULTS:
A total of 25 RCTs involving 1 794 cases were included. The results of network meta-analysis showed that electrical nerve stimulation, shockwave therapy, biofeedback therapy, magnetotherapy, ultrasound therapy and acupuncture were significantly superior to conventional medication and placebo in the total NIH-CPSI scores(P< 0.05), and so were electrical nerve stimulation and shockwave therapy to acupuncture and hyperthermia(P< 0.05), magnetic therapy to hyperthermia, and ultrasound therapy to placebo(P< 0.05). Shockwave therapy, biofeedback therapy, electrical nerve stimulation, magnetotherapy and ultrasound therapy achieved remarkably better clinical efficacy than conventional medication and placebo in the treatment of CP/CPPS, and so did shockwave therapy than electrical nerve stimulation, hyperthermia, ultrasonic therapy, magnetotherapy and acupuncture.
CONCLUSION
For the treatment of CP/CPPS, electrical nerve stimulation is advantageous over the other interventions in improving total NIH-CPSI scores, and shockwave therapy is advantageous in relieving pain symptoms and clinical efficacy. This conclusion, however, needs to be further verified by more high-quality clinical studies.
Humans
;
Acupuncture Therapy
;
Biofeedback, Psychology
;
Chronic Disease
;
Electric Stimulation Therapy
;
Extracorporeal Shockwave Therapy
;
Magnetic Field Therapy
;
Pelvic Pain/therapy*
;
Prostatitis/therapy*
;
Randomized Controlled Trials as Topic
;
Ultrasonic Therapy
5.Relationship between sterol carrier protein 2 gene and prostate cancer: Based on single-cell RNA sequencing combined with Mendelian randomization.
Jia-Xin NING ; Shu-Hang LUO ; Hao-Ran WANG ; Hui-Min HOU ; Ming LIU
National Journal of Andrology 2025;31(5):403-411
Objective: To investigate the relationship between the lipid metabolism-related gene sterol carrier protein 2(SCP2) and prostate cancer (PCa) from a multi-omics perspective using single-cell transcriptomes combined with Mendelian randomization. Methods: Single-cell transcriptome data of benign and malignant prostate tissues were obtained from GSE120716, GSE157703 and GSE141445 datasets, respectively. Integration, quality control and annotation were performed on the data to categorize the epithelial cells into high and low SCP2 expression groups, followed by further differential and trajectory analyses. Single nucleotide polymorphism (SNP) data for SCP2 expression quantitative trait loci (eQTL) were subsequently downloaded from Genotype-Tissue Expression (GTEx) and investigated from the PCa Society Cancer-Related Genomic Alteration Panel for the Investigation of Cancer-Related Alterations (PRACTICAL) to obtain PCa outcome data for Mendelian randomization analysis to validate the causal relationship between SCP2 and PCa. Results: High SCP2-expressing epithelial cells had higher energy metabolism and proliferation capacity with low immunotherapy response and metastatic tendency. Trajectory analysis showed that epithelial cells with high SCP2 expression may have a higher degree of malignancy, and SCP2 may be a key marker gene for differentiation of malignant epithelial cells in the prostate. Further Mendelian randomization results showed a significant causal relationship between SCP2 and PCa development (OR=1.045, 95% CI: 1.010 -1.083, P=0.011). Conclusion: By combining single-cell transcriptome and Mendelian randomization, the role of the lipid metabolism-related gene SCP2 in PCa development has been confirmed, and new targets and therapeutic directions for PCa treatment have been provided.
Humans
;
Prostatic Neoplasms/genetics*
;
Male
;
Mendelian Randomization Analysis
;
Polymorphism, Single Nucleotide
;
Quantitative Trait Loci
;
Single-Cell Analysis
;
Sequence Analysis, RNA
;
Carrier Proteins/genetics*
;
Transcriptome
;
Lipid Metabolism
6.Deubiquitinase JOSD2 alleviates colitis by inhibiting inflammation via deubiquitination of IMPDH2 in macrophages.
Xin LIU ; Yi FANG ; Mincong HUANG ; Shiliang TU ; Boan ZHENG ; Hang YUAN ; Peng YU ; Mengyao LAN ; Wu LUO ; Yongqiang ZHOU ; Guorong CHEN ; Zhe SHEN ; Yi WANG ; Guang LIANG
Acta Pharmaceutica Sinica B 2025;15(2):1039-1055
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, which increases the incidence of colorectal cancer (CRC). In the pathophysiology of IBD, ubiquitination/deubiquitination plays a critical regulatory function. Josephin domain containing 2 (JOSD2), a deubiquitinating enzyme, controls cell proliferation and carcinogenesis. However, its role in IBD remains unknown. Colitis mice model developed by dextran sodium sulfate (DSS) or colon tissues from individuals with ulcerative colitis and Crohn's disease showed a significant upregulation of JOSD2 expression in the macrophages. JOSD2 deficiency exacerbated the phenotypes of DSS-induced colitis by enhancing colon inflammation. DSS-challenged mice with myeloid-specific JOSD2 deletion developed severe colitis after bone marrow transplantation. Mechanistically, JOSD2 binds to the C-terminal of inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) and preferentially cleaves K63-linked polyubiquitin chains at the K134 site, suppressing IMPDH2 activity and preventing activation of nuclear factor kappa B (NF-κB) and inflammation in macrophages. It was also shown that JOSD2 knockout significantly exacerbated increased azoxymethane (AOM)/DSS-induced CRC, and AAV6-mediated JOSD2 overexpression in macrophages prevented the development of colitis in mice. These outcomes reveal a novel role for JOSD2 in colitis through deubiquitinating IMPDH2, suggesting that targeting JOSD2 is a potential strategy for treating IBD.
7.Effects of acupuncture needle modification on acupuncture analgesia.
Ming-Zhu SUN ; Xin WANG ; Ying-Chen LI ; Yu-Hang LIU ; Yi YU ; Liu-Jie REN ; Wei GU ; Wei YAO
Journal of Integrative Medicine 2025;23(1):66-78
OBJECTIVE:
The analgesic effect of acupuncture has been widely accepted. Nevertheless, the mechanism behind its analgesic effect remains elusive, thus impeding the progress of research geared toward enhancing the analgesic effect of acupuncture. This paper investigated the role of acupuncture needle surface textures on acupuncture's analgesic effect by creating four experimental acupuncture needles with different patterns of surface augmentation.
METHODS:
Four types of acupuncture needles with different surface textures (the lined needle, circle needle, sandpaper needle, and threaded needle) were designed. Additionally, the force/torque measurement system used a robot arm and mechanical sensor to measure the force on the needle during insertion and manipulation. To perform acupuncture analgesia experiments, four experimental acupuncture needles and a normal needle were inserted into the Zusanli (ST36) acupoint of rats with inflammatory pain. By comparing the force and torque and the analgesic efficacy of the different acupuncture needles, these experiments tested the role of acupuncture needle body texture on acupuncture analgesia.
RESULTS:
The analgesic effects of different acupuncture needle body textures varied. Specifically, the force required to penetrate the skin with the lined needle was not greater than that for the normal needle; however, the needle with inscribed circles and the sandpaper-roughened needle both required greater force for insertion. Additionally, the torque of the lined needle reached 2 × 10-4 N·m under twisting manipulation, which was four times greater the torque of a normal needle (5 × 10-5 N·m). Furthermore, the lined needle improved pain threshold and mast cell degranulation rate compared to the normal needle.
CONCLUSION
Optimizing the texture of acupuncture needles can enhance acupuncture analgesia. The texture of our experimental acupuncture needles had a significant impact on the force needed to penetrate the skin and the torque needed to manipulate the needle; it was also linked to variable analgesic effects. This study provides a theoretical basis for enhancing the analgesic efficacy of acupuncture through the modification of needles and promoting the development of acupuncture therapy. Please cite this article as: Sun MZ, Wang X, Li YC, Liu YH, Yu Y, Ren LJ, Gu W, Yao W. Effects of acupuncture needle modification on acupuncture analgesia. J Integr Med. 2025; 23(1): 66-78.
Needles
;
Acupuncture Analgesia/methods*
;
Animals
;
Rats
;
Male
;
Acupuncture Points
;
Rats, Sprague-Dawley
9.Construction of NTV-ΔF1L-C7L modified strain of non-replication vaccinia virus NTV and evaluation of its immunological effects
Jiao REN ; Hang YUAN ; Li ZHAO ; Yamei DOU ; Shiyuan LIU ; Xin MENG ; Houwen TIAN ; Wenling WANG ; Wenjie TAN
Chinese Journal of Experimental and Clinical Virology 2024;38(2):181-187
Objective:We genetically modified our non-replicating vaccinia virus NTV to improve its immunogenicity.Methods:We constructed NTV-modified strain NTV-ΔF1L-C7L by homologous recombination of vaccinia virus based on CRISPR-Cas9 technology by inserting the C7L gene while deleting the F1L gene. The recombinant virus NTV-ΔF1L-C7L was then immunized with 10 7 PFU in BALB/c mice, and the levels of humoral and cellular immunity induced by NTV-ΔF1L-C7L were detected by ELISA and ELISpot method, respectively, and the levels of neutralizing antibodies were determined by the phage-reduced neutralization assay. Results:The PCR and western- blot identification proved that the F1L gene of the constructed NTV-modified strain NTV-ΔF1L-C7L was missing, while the C7L gene was inserted back in the region, and the C7L gene could be expressed normally, indicating that the recombinant virus was constructed correctly. After immunization of mice with NTV-ΔF1L-C7L, ELISA result showed that the recombinant virus NTV-ΔF1L-C7L induced a higher level of IgG antibody than NTV; ELISpot result also showed that the recombinant virus was able to induce a higher level of IFN-γ; and the result of plaque reduction neutralization test showed that the recombinant virus was able to induce a higher level of IFN-γ antibody than that of NTV.Conclusions:We correctly constructed the NTV gene-modified strain NTV-ΔF1L-C7L, which induced stronger humoral and cellular immunity compared with NTV, and provided reference data for the research and development of replacement products for smallpox or monkeypox vaccines.
10. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I

Result Analysis
Print
Save
E-mail