1.Effect of Feiyanning Granules on Inducing Ferroptosis in Lung Cancer Cells and Its Regulatory Function onNrf2/SLC7A11/GPX4 Signaling Pathway
Xin LIU ; Wenjie WANG ; Zhenye XU ; Zhan ZHENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):100-107
ObjectiveThis study aims to explore the effect of Feiyanning granules on ferroptosis in lung cancer cells and its regulatory function within the nuclear transcription factor E2-related factor 2 (Nrf2)/mouse solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway. MethodsThe cell counting kit-8 (CCK-8) method was used to detect the effect of Feiyanning granule on the proliferation of A549 lung cancer cells. A549 lung cancer cells were categorized into a blank group, a ferroptosis inhibitor-1 (Fer-1) group (10 μmol·L-1), a Feiyanning granules (600 mg·L-1) group, and a Feiyanning granules + Fer-1 group. After 48 hours of intervention, the activity and morphology of the cells were observed. The CCK-8 method was employed to measure cell viability. Biochemical assays were carried out to measure the levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and ferrous ions (Fe²⁺) in A549 cells. Western blot was utilized to evaluate the expression levels of Kelch-like ECH-associated protein 1 (Keap1), Nrf2, SLC7A11, and GPX4 proteins. A549 lung cancer cells were categorized into a blank group and a Feiyanning Granule group (600 mg·L-1), and mitochondrial morphology was examined via transmission electron microscopy (TEM). ResultsAfter the intervention of Feiyaning granules, the proliferation of A549 cells was significantly inhibited in a concentration-dependent manner compared with that in the blank group (P<0.01). Compared with the blank group, the Feiyanning granules group exerted an significantly inhibitory effect on the viability of lung cancer cells (P<0.01). Compared with that in the Feiyanning granules group, the cell viability in the Feiyanning granules +Fer-1 group was obviously restored (P<0.05). Compared with the blank group, the Feiyanning Granule group showed a significant increase in the levels of ROS, MDA, and Fe²⁺ (P<0.01), a significant decrease in the GSH level (P<0.01), and facilitated ferroptosis. Compared with the blank group, the Feiyanning granules group showed significantly decreased expression of Nrf2, SLC7A11, and GPX4 proteins and enhanced expression of Keap1 (P<0.01). Compared with those in the Feiyanning Granule group, the protein levels of Nrf2, SLC7A11, and GPX4 increased significantly (P<0.01), and the expression of Keap1 decreased significantly in the Feiyanning granules + Fer-1 group (P<0.01). Compared with the blank group, the Feiyaning granules group exhibited reduced mitochondrial size and increased matrix electron density. ConclusionFeiyanning granules can induce ferroptosis in lung cancer cells, and its underlying mechanism might be associated with the inhibition of the Nrf2/SLC7A11/GPX4 signaling pathway.
2.Quercetin Ameliorates Gouty Arthritis in Rats via ROS/NLRP3/IL-1β Signaling Pathway
Baowei FENG ; Yan WANG ; Chang LI ; Yujing ZHANG ; Dingxing FAN ; Xin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):145-153
ObjectiveTo investigate the effect of quercetin on acute gouty arthritis (GA) in rats by inhibiting the reactive oxygen species (ROS)/NOD-like receptor protein 3 (NLRP3)/interleukin-1β (IL-1β) signaling pathway. MethodsSixty SPF-grade male SD rats were randomized into normal, model, colchicine (0.3 mg·kg-1), and low-, medium-, and high-dose (25, 50, 100 mg·kg-1, respectively) quercetin groups (n=10). The rats in the dosing groups were administrated with the corresponding drugs (10 mL·kg-1) by gavage once a day for one week. An equal volume of normal saline was given by gavage to rats in normal and model groups. One hour after drug administration on day 5, an acute GA model was established in other groups except the control group via intra-articular injection of monosodium urate (MSU) suspension into the right posterior ankle joint cavity. The joint swelling and gait were scored at the time points of 6, 12, 24, 48 h after modeling. Histopathological alterations in the ankle joint tissue from each group were assessed by hematoxylin-eosin (HE) staining. Malondialdehyde (MDA), xanthine oxidase (XOD), and total superoxide dismutase (T-SOD) assay kits were used to assess the levels of MDA, XOD, and T-SOD in the serum. The levels of tumor interleukin-6 (IL-6), necrosis factor-α (TNF-α), and IL-1β in the rat serum, as well as ROS in the ankle joint tissue, were measured by enzyme-linked immunosorbent assay (ELISA). Western blot was performed to determine the protein levels of NLRP3, thioredoxin-interacting protein (TXNIP), apoptosis-associated speck-like protein containing a CARD domain (ASC), precursor cysteinyl aspartate-specific proteinase-1 (pro-Caspase-1), cleaved Caspase-1 (Caspase-1 p20), and IL-1β in the ankle joint tissue. Real-time PCR was employed to assess the mRNA levels of TXNIP, NLRP3, ASC, IL-1β, and TNF-α in the ankle joint tissue. ResultsCompared with the normal group, the model group exhibited decreased spontaneous activity, mental fatigue, increased ankle joint swelling and gait scores (P<0.01), aggravated synovial tissue edema and inflammatory cell infiltration (P<0.01), elevated levels of XOD, MDA, TNF-α, IL-1β, and IL-6 in the serum and ROS in the joint tissue (P<0.01), a declined level of T-SOD (P<0.01), up-regulated protein levels of NLRP3, TXNIP, ASC, pro-Caspase-1, Caspase-1 p20, and IL-1β in the ankle joint tissue (P<0.01), and up-regulated mRNA levels of NLRP3, TXNIP, ASC, IL-1β, and TNF-α in the ankle joint tissue (P<0.01). Compared with the model group, the medium- and high-dose quercetin groups showed improved general conditions, decreased gait scores (P<0.05, P<0.01), reduced joint swelling (P<0.01), alleviated synovial tissue edema and inflammatory cell infiltration (P<0.05, P<0.01), lowered levels of XOD, MDA, TNF-α, IL-1β, and IL-6 in the serum and ROS in the joint tissue (P<0.01), increased levels of T-SOD (P<0.01), down-regulated protein levels of TXNIP, NLRP3, ASC, pro-Caspase-1, Caspase-1 p20, and IL-1β in the ankle joint tissue (P<0.05, P<0.01), and down-regulated mRNA levels of TXNIP, NLRP3, ASC, IL-1β, and TNF-α in the ankle joint tissue (P<0.01). Low-dose quercetin also ameliorated some of the above parameters (P<0.05, P<0.01). ConclusionQuercetin exerts anti-GA effects by blocking the ROS/NLRP3/IL-1β signaling pathway, downregulating NLRP3 inflammasome activation, and inhibiting the production of pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6.
3.Molecular Mechanism of Programmed Cell Death in Chronic Obstructive Pulmonary Disease and Traditional Chinese Medicine Intervention: A Review
Xin PENG ; Yunhui LI ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Haotian XU ; Ziming DANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):304-313
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that poses a significant threat to global health, exhibiting high morbidity, disability and mortality rate, with its prevention and treatment situation becoming increasingly critical. The pathogenesis of COPD is complex, and the underlying cellular and molecular biological mechanisms remain incompletely elucidated. Programmed cell death (PCD) is the process wherein cells actively undergo demise to maintain internal environmental stability in response to certain signals or specific stimuli. Contemporary medical research indicates that the dysregulation of PCD patterns such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis is closely related to the onset and progression of COPD. Clarifying the molecular mechanisms of PCD in COPD may provide novel perspectives for in-depth understanding and prevention of the disease. Traditional Chinese medicine (TCM) is characterized by holistic regulation. In recent years, extensive research has been conducted in the TCM field focusing on modulating apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis for the treatment of COPD, yielding remarkable achievements. Therefore, this study systematically explored the molecular mechanism of PCD in COPD and reviewed the potential mechanisms and intervention status of TCM targeting PCD in COPD, aiming to provide insights and references for the clinical prevention, treatment and in-depth research of COPD.
4.Molecular Mechanism of Programmed Cell Death in Chronic Obstructive Pulmonary Disease and Traditional Chinese Medicine Intervention: A Review
Xin PENG ; Yunhui LI ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Haotian XU ; Ziming DANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):304-313
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that poses a significant threat to global health, exhibiting high morbidity, disability and mortality rate, with its prevention and treatment situation becoming increasingly critical. The pathogenesis of COPD is complex, and the underlying cellular and molecular biological mechanisms remain incompletely elucidated. Programmed cell death (PCD) is the process wherein cells actively undergo demise to maintain internal environmental stability in response to certain signals or specific stimuli. Contemporary medical research indicates that the dysregulation of PCD patterns such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis is closely related to the onset and progression of COPD. Clarifying the molecular mechanisms of PCD in COPD may provide novel perspectives for in-depth understanding and prevention of the disease. Traditional Chinese medicine (TCM) is characterized by holistic regulation. In recent years, extensive research has been conducted in the TCM field focusing on modulating apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis for the treatment of COPD, yielding remarkable achievements. Therefore, this study systematically explored the molecular mechanism of PCD in COPD and reviewed the potential mechanisms and intervention status of TCM targeting PCD in COPD, aiming to provide insights and references for the clinical prevention, treatment and in-depth research of COPD.
5.Multicenter machine learning-based construction of a model for predicting potential organ donors and validation with decision curve analysis
Xu WANG ; Wenxiu LI ; Fenghua WANG ; Shuli WU ; Dong JIA ; Xin GE ; Zhihua SHAN ; Tongzuo LI
Organ Transplantation 2026;17(1):106-115
Objective To evaluate the predictive value of different machine learning models constructed in a multicenter environment for potential organ donors and verify their clinical application feasibility. Methods The study included 2 000 inpatients admitted to five domestic tertiary hospitals from January 2020 to December 2023, who met the criteria for potential organ donation assessment. They were randomly divided into a training set and an internal validation set (7∶3). Another 300 similar patients admitted to the First Affiliated Hospital of Harbin Medical University from January 2024 to April 2025 were included as an external validation set. The area under the curve (AUC), sensitivity, specificity, accuracy and F1-score of three models were compared, and the consistency of the potential organ donor determination process was tested. Multivariate logistic regression analysis was used to identify predictive factors of potential organ donors. Decision curve analysis (DCA) was employed to verify the resource efficiency of each model, and the threshold interval and intervention balance point were assessed. Results Apart from age, there were no significant differences in other basic characteristics among the centers (all P>0.05). The consistency of the potential organ donor determination process among researchers in each center was good [all 95% confidence interval (CI) lower limits >0]. In the internal validation set, the XGBoost model had the best predictive performance (AUC=0.92, 95% CI 0.89-0.94) and the best calibration (P=0.441, Brier score 0.099). In the external validation set, the XGBoost model also had the best predictive performance (AUC=0.91, 95% CI 0.88-0.94), outperforming logistic regression and random forest models. Multivariate logistic regression showed that mechanical ventilation had the greatest impact (odds ratio=2.06, 95% CI 1.54-2.76, P<0.001). DCA indicated that the XGBoost model had the highest net benefit in the threshold interval of 0.2-0.6. The “treat all” strategy only had a slight advantage at extremely low thresholds. The recommended threshold interval, which balances intervention costs and clinical benefits, considers ≥50% positive predictive value (PPV) and ≤50 referrals per 100 high-risk patients. Conclusions The XGBoost model established in a multicenter environment is accurate and well-calibrated in predicting potential organ donors. Combined with DCA, it may effectively guide the timing of clinical interventions and resource allocation, providing new ideas for the assessment and management of organ donation after brain death.
6.Molecular biological research and molecular homologous modeling of Bw.03 subgroup
Li WANG ; Yongkui KONG ; Huifang JIN ; Xin LIU ; Ying XIE ; Xue LIU ; Yanli CHANG ; Yafang WANG ; Shumiao YANG ; Di ZHU ; Qiankun YANG
Chinese Journal of Blood Transfusion 2025;38(1):112-115
[Objective] To study the molecular biological mechanism for a case of ABO blood group B subtype, and perform three-dimensional modeling of the mutant enzyme. [Methods] The ABO phenotype was identified by the tube method and microcolumn gel method; the ABO gene of the proband was detected by sequence-specific primer polymerase chain reaction (PCR-SSP), and the exon 6 and 7 of the ABO gene were sequenced and analyzed. Homologous modeling of Bw.03 glycosyltransferase (GT) was carried out by Modeller and analyzed by PyMOL2.5.0 software. [Results] The weakening B antigen was detected in the proband sample by forward typing, and anti-B antibody was detected by reverse typing. PCR-SSP detection showed B, O gene, and the sequencing results showed c.721 C>T mutation in exon 7 of the B gene, resulting in p. Arg 241 Trp. Compared with the wild type, the structure of Bw.03GT was partially changed, and the intermolecular force analysis showed that the original three hydrogen bonds at 241 position disappeared. [Conclusion] Blood group molecular biology examination is helpful for the accurate identification of ambiguous blood group. Homologous modeling more intuitively shows the key site for the weakening of Bw.03 GT activity. The intermolecular force analysis can explain the root cause of enzyme activity weakening.
7.Changes in renal function in chronic hepatitis B patients treated initially with entecavir versus tenofovir alafenamide fumarate and related influencing factors
Shipeng MA ; Yanqing YU ; Xiaoping WU ; Liang WANG ; Liping LIU ; Yuliang ZHANG ; Xin WAN ; Shanfei GE
Journal of Clinical Hepatology 2025;41(1):44-51
ObjectiveTo investigate the influence of entecavir (ETV) versus tenofovir alafenamide fumarate (TAF) on renal function in previously untreated patients with chronic hepatitis B (CHB). MethodsA retrospective analysis was performed for the clinical data of 167 previously untreated CHB patients who received ETV or TAF treatment for at least 48 weeks at the outpatient service of Department of Infectious Diseases in The First Affiliated Hospital of Nanchang University from September 2019 to November 2023, and according to the antiviral drug used, they were divided into ETV group with 117 patients and TAF group with 50 patients. In order to balance baseline clinical data, propensity score matching (PSM) was used for matching and analysis at a ratio of 2∶1, and the two groups were compared in terms of estimated glomerular filtration rate (eGFR) and the incidence rate of abnormal renal function at week 48. According to eGFR at week 48, the patients were divided into normal renal function group and abnormal renal function group. The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups, and the chi-square test or the Fisher’s exact test was used for comparison of categorical data between two groups. The multivariate Logistic regression analysis was used to investigate the influencing factors for abnormal renal function, and the receiver operating characteristic (ROC) curve was used to assess the performance of each indicator in predicting abnormal renal function. The Kaplan-Meier method was used to analyze the cumulative incidence rate of abnormal renal function, and the log-rank test was used for comparison. The analysis of variance with repeated measures was used to compare the dynamic changes of eGFR during antiviral therapy in CHB patients. ResultsAfter PSM matching, there were 100 patients in the ETV group and 50 patients in the TAF group. There were no significant differences in baseline clinical data between the ETV group and the TAF group (all P>0.05), with an eGFR level of 112.29±9.92 mL/min/1.73 m2 in the ETV group and 114.72±12.15 mL/min/1.73 m2 in the TAF group. There was a reduction in eGFR from baseline to week 48 in both groups, and compared with the TAF group at week 48, the ETV group had a significantly lower eGFR (106.42±14.12 mL/min/1.73 m2 vs 112.25±13.44 mL/min/1.73 m2, t=-2.422, P=0.017) and a significantly higher incidence rate of abnormal renal function (17.00% vs 4.00%, χ2=5.092, P=0.024). After the patients were divided into normal renal function group with 131 patients and abnormal renal function group with 19 patients, the univariate analysis showed that there were significant differences between the two groups in age (Z=-2.039, P=0.041), treatment drug (ETV/TAF) (χ2=5.092, P=0.024), and baseline eGFR level (t=4.023, P<0.001), and the multivariate Logistic regression analysis showed that baseline eGFR (odds ratio [OR]=0.896, 95% confidence interval [CI]: 0.841 — 0.955, P<0.001) and treatment drug (OR=5.589, 95%CI: 1.136 — 27.492, P=0.034) were independent influencing factors for abnormal renal function. Baseline eGFR had an area under the ROC curve of 0.781 in predicting abnormal renal function in CHB patients, with a cut-off value of 105.24 mL/min/1.73 m2, a sensitivity of 73.68%, and a specificity of 82.44%. The Kaplan-Meier curve analysis showed that the patients with baseline eGFR≤105.24 mL/min/1.73 m2 had a significantly higher cumulative incidence rate of abnormal renal function than those with baseline eGFR>105.24 mL/min/1.73 m2 (χ2=22.330, P<0.001), and the ETV group had a significantly higher cumulative incidence rate of abnormal renal function than the TAF group (χ2=4.961, P=0.026). With the initiation of antiviral therapy, both the ETV group and the TAF group had a significant reduction in eGFR (F=5.259, P<0.001), but the ETV group only had a significant lower level of eGFR than the TAF group at week 48 (t=-2.422, P=0.017); both the baseline eGFR≤105.24 mL/min/1.73 m2 group and the baseline eGFR>105.24 mL/min/1.73 m2 group had a significant reduction in eGFR (F=5.712, P<0.001), and there was a significant difference in eGFR between the two groups at baseline and weeks 12, 24, 36, and 48 (t=-13.927, -9.780, -8.835, -9.489, and -8.953, all P<0.001). ConclusionFor CHB patients initially treated with ETV or TAF, ETV antiviral therapy has a higher risk of renal injury than TAF therapy at week 48.
8.Discussion on the decoction and dosing methods of rhubarb root and rhizome in classical prescriptions
Zilin REN ; Changxiang LI ; Yuxiao ZHENG ; Xin LAN ; Ying LIU ; Yanhui HE ; Fafeng CHENG ; Qingguo WANG ; Xueqian WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):48-54
The purpose of this paper is to explore the decoction and dosing methods of rhubarb root and rhizome in classical prescriptions and to provide a reference basis for the clinical use of rhubarb root and rhizome. By collating the relevant classical prescriptions of rhubarb root and rhizome in Shanghan Lun and Jingui Yaolüe, the relationship between its decoction and dosing methods and the syndrome was analyzed. The decoction of rhubarb root and rhizome in classical prescriptions can be divided into three categories: simultaneous decoction, decoction later, and other methods (impregnation in Mafei decoction, decoction with water from the well spring first taken in the morning, and pills). If it enters the blood level or wants to slow down, rhubarb root and rhizome should be decocted at the same time with other drugs. If it enters the qi level and wants to speed up, rhubarb root and rhizome should be decocted later. If it wants to upwardly move, rhubarb root and rhizome should be immersed in Mafei decoction. If it wants to suppress liver yang, rhubarb root and rhizome should be decocted with water from the well spring first taken in the morning. If the disease is prolonged, rhubarb root and rhizome should be taken in pill form. The dosing methods of rhubarb root and rhizome can be divided into five categories: draught, twice, three times, before meals, and unspecified. For acute and serious illnesses with excess of pathogenic qi and adequate vital qi, we choose draught. For gastrointestinal diseases, we choose to take the medicine twice. For achieving a moderate and long-lasting effect, we choose to take the medicine three times. If the disease is located in the lower part of the heart and abdomen, we choose to take it before meals. The use of rhubarb root and rhizome in clinical practice requires the selection of the appropriate decoction and dosing methods according to the location of the disease, the severity of the disease, the patient′s constitution, and the condition after taking the medicine.
9.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
10.Structure, content and data standardization of rehabilitation medical records
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Shiyong WU ; Yaoguang ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Jian YANG ; Na AN ; Yuanjun DONG ; Xiaojia XIN ; Xiangxia REN ; Ye LIU ; Yifan TIAN
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):21-32
ObjectiveTo elucidate the critical role of rehabilitation medical records (including electronic records) in rehabilitation medicine's clinical practice and management, comprehensively analyzed the structure, core content and data standards of rehabilitation medical records, to develop a standardized medical record data architecture and core dataset suitable for rehabilitation medicine and to explore the application of rehabilitation data in performance evaluation and payment. MethodsBased on the regulatory documents Basic Specifications for Medical Record Writing and Basic Specifications for Electronic Medical Records (Trial) issued by National Health Commission of China, and referencing the World Health Organization (WHO) Family of International Classifications (WHO-FICs) classifications, International Classification of Diseases (ICD-10/ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), this study constructed the data architecture, core content and data standards for rehabilitation medical records. Furthermore, it explored the application of rehabilitation record summary sheets (home page) data in rehabilitation medical statistics and payment methods, including Diagnosis-related Groups (DRG), Diagnosis-Intervention Packet (DIP) and Case Mix Index. ResultsThis study proposed a systematic standard framework for rehabilitation medical records, covering key components such as patient demographics, rehabilitation diagnosis, functional assessment, rehabilitation treatment prescriptions, progress evaluations and discharge summaries. The research analyzed the systematic application methods and data standards of ICD-10/ICD-11, ICF and ICHI Beta-3 in the fields of medical record terminology, coding and assessment. Constructing a standardized data structure and data standards for rehabilitation medical records can significantly improve the quality of data reporting based on the medical record summary sheet, thereby enhancing the quality control of rehabilitation services, effectively supporting the optimization of rehabilitation medical insurance payment mechanisms, and contributing to the establishment of rehabilitation medical performance evaluation and payment based on DRG and DIP. ConclusionStructured rehabilitation records and data standardization are crucial tools for quality control in rehabilitation. Systematically applying the three reference classifications of the WHO-FICs, and aligning with national medical record and electronic health record specifications, facilitate the development of a standardized rehabilitation record architecture and core dataset. Standardizing rehabilitation care pathways based on the ICF methodology, and developing ICF- and ICD-11-based rehabilitation assessment tools, auxiliary diagnostic and therapeutic systems, and supporting terminology and coding systems, can effectively enhance the quality of rehabilitation records and enable interoperability and sharing of rehabilitation data with other medical data, ultimately improving the quality and safety of rehabilitation services.


Result Analysis
Print
Save
E-mail