1.Hepatitis E virus infection among blood donors in Ningbo
Mingxi PENG ; Yiyu LIU ; Huyan MAO ; Dan LIN ; Lu XIN ; Ning SHU ; Jianfeng HAN ; Feng DING
Chinese Journal of Blood Transfusion 2025;38(1):7-12
[Objective] To investigate the infection status and characteristics of HEV among voluntary blood donors in Ningbo, and to provide a basis for improving the blood screening strategy. [Methods] A total of 12 227 blood samples from voluntary blood donors in Ningbo from June 2022 to May 2023 were tested for HEV serology, enzymology, and nucleic acid testing. Furthermore, HEV gene sequencing was performed for genotyping analysis, and donors with reactive nucleic acid testing results were followed up to confirm their infection status. [Results] The reactivity rate of HEV Ag, anti-HEV IgM and anti-HEV IgG was 0.098%, 0.899% and 29.198%, respectively. There was no difference in the reactivity of anti-HEV IgM and anti-HEV IgG between genders, donation frequencies and donation types (P>0.05). The reactivity rate increased significantly with age (P<0.05). The rate of ALT disqualification (ALT>50U/L) was significantly higher than that in non-reactive samples (P<0.05). The HEV Ag reactivity rate (0.098%) was not correlated with gender, donation frequency, donation type or age. One HEV RNA positive case was found, with a positive rate of 0.008%(1/12 227). It was confirmed to be hepatitis E virus genotype 3 by sequencing analysis. Apart from HEV Ag reactivity, all other blood safety screening items were non-reactive, suggesting this case might be in the acute infection phase. The follow-up results showed that all indicators of the donor's previous blood donation were non-reactive. [Conclusion] Pre-donation ALT detection can reduce the risk of transfusion-transmitted HEV (TT-HEV) to a certain extent, and the effective way to prevent TT-HEV is to detect HEV RNA and serology of donor blood.
2.Research progress on the mechanism of sesquiterpenoids against hepatocellular carcinoma
Jingxin MAO ; Xin DU ; Yan LI
China Pharmacy 2025;36(3):379-384
As one of the most common solid organ malignant tumors in the world, hepatocellular carcinoma has climbed to the fourth place in incidence rate and the second place in mortality in China, which seriously threatens people’s health. Terpenoids are natural active substances widely present in nature, among which sesquiterpenoids are numerous. They exhibit a variety of pharmacological activities, such as anti-tumor, antibacterial, anti-inflammatory, antiviral and antioxidant activities. This article reviews the research progress on the anti-hepatocellular carcinoma mechanism of sesquiterpenes from 2015 to 2024. The results showed that 24 sesquiterpenoids for the treatment of hepatocellular carcinoma have been reported in the literature in the past 10 years, and these compounds have shown potential in treating hepatocellular carcinoma by inhibiting cancer cell proliferation, inducing apoptosis, preventing invasion and metastasis, regulating immunity, and enhancing anti-drug resistance. The mechanism of anti-hepatocellular carcinoma mainly involves three regulatory pathways: phosphatidylinositol 3-kinase/protein kinase B/ mammalian target of rapamycin signaling pathway, nuclear factor kappa-B signaling pathway, and mitochondrial pathway. In the future, it is necessary to continue to explore new anti-hepatocellular carcinoma drugs with high research value, conduct in-depth analysis on the mechanism of synergistic anti-hepatocellular cancer effects of multiple components, targets, pathways, and accelerate the development of finished products in order to be widely used in clinical practice.
3.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
4.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
5.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
6.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
7.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
8.Analysis and application thinking of standards for 500 kinds of traditional Chinese medicine formula granules on base of industrial practice.
Yong LIU ; Jun ZHANG ; Xin-Hai DONG ; Lin ZHOU ; Dong-Mei SUN ; Fu-Lin MAO ; Zhen-Yu LI ; Lei HUANG ; Jin-Lai LIU
China Journal of Chinese Materia Medica 2025;50(5):1427-1436
Following the release of the Technical Requirements on Quality Control and Standard Establishment of Traditional Chinese Medicine Formula Granules by the National Medical Products Administration in 2021, Chinese Pharmacopoeia Commission has promulgated 296 national drug standards so far, and most provinces have started the work of establishing provincial standards as supplements. The promulgation of standards fostered high-quality development of the industry. Since the implementation of national and provincial standards for more than three years, enterprises have gained deep understanding and hands-on experiences on the characteristics, technical requirements, production process, and quality control of traditional Chinese medicine(TCM) formula granules. Meanwhile, challenges have emerged restricting the high-quality development of this industry, including how to formulate quality control strategies for medicinal materials and decoction pieces, how to reduce manufacturing costs, and how to improve the pass rate and product stability under high standards. Based on the work experiences from standard management and process research, this article analyzed the distribution of sources, processing methods, dry extract rate ranges, process requirements for volatile oil-containing decoction pieces, control measures of safety indices, characteristics and trends of setting characteristic chromatograms or fingerprints, characteristics and trends of setting content ranges, and main differences between national standards and provincial standards. On the one hand, this article aims to present main characteristics for deeply understanding different indicators in standards and provide basic ideas for establishing quality and process control systems. On the other hand, from the perspective of industrial practice, suggestions are put forward on the important aspects that need to be focused on in the quality and process control of TCM formula granules.
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Medicine, Chinese Traditional/standards*
;
China
;
Drug Industry/standards*
9.Differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting in Shandong, China.
Yue WANG ; Xin-Ying MAO ; Yu DING ; Hong-Xia YU ; Zhi-Fang RAN ; Xiao-Li CHEN ; Jie ZHOU
China Journal of Chinese Materia Medica 2025;50(6):1524-1533
In order to compare the differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting, growth indexes, photosynthetic characteristics, soil enzyme activities, secondary metabolite contents, and antioxidant activities of P. quinquefolius under different planting modes were examined and compared, and One-way analysis of variance(ANOVA) and correlation analyses were carried out by using the software SPSS 25.0 and GraphPad Prism 9.5. The Origin 2021 software was used for plotting. The results showed that compared with those under field planting, the plant height, leaf length, leaf width, photosynthetic rate, and chlorophyll content of P. quinquefolius under understory planting were significantly reduced, and arbuscular mycorrhizal fungi(AMF) infestation rate and infestation intensity, ginsenoside content, and antioxidant activity were significantly increased. The activities of inter-root soil urease, sucrase, and catalase increased, while the activities of non-inter-root soil urease and alkaline phosphatase increased. Correlation analyses showed that the plant height and leaf length of P. quinquefolius plant were significantly positively correlated with net photosynthetic rate, transpiration rate, chlorophyll content, and electron transfer rate(P<0.05), while ginsenoside content was significantly negatively correlated with net photosynthetic rate, chlorophyll content, and electron transfer rate(P<0.05) and significantly positively correlated with AMF infestation rate and infestation intensity(P<0.05). In addition, ginsenoside content was significantly positively correlated with the activities of inter-root soil sucrase, urease, and catalase(P<0.05). This study provides basic data for revealing the mechanism of secondary metabolite accumulation in P. quinquefolius under understory planting and for exploring and practicing the ecological mode of P. quinquefolius under understory planting.
Panax/microbiology*
;
China
;
Secondary Metabolism
;
Soil/chemistry*
;
Photosynthesis
;
Plant Leaves/metabolism*
;
Chlorophyll/metabolism*
;
Mycorrhizae
10.Color-component correlation and mechanism of component transformation of processed Citri Reticulatae Semen.
Kui-Lin ZHU ; Jin-Lian ZOU ; Xu-Li DENG ; Mao-Xin DENG ; Hai-Ming WANG ; Rui YIN ; Zhang-Xian CHEN ; Yun-Tao ZHANG ; Hong-Ping HE ; Fa-Wu DONG
China Journal of Chinese Materia Medica 2025;50(9):2382-2390
High-performance liquid chromatography(HPLC) was used to determine the content of three major components in Citri Reticulatae Semen(CRS), including limonin, nomilin, and obacunone. The chromaticity of the CRS sample during salt processing and stir-frying was measured using a color difference meter. Next, the relationship between the color and content of the salt-processed CRS sample was investigated through correlation analysis. By integrating the oil bath technique for processing simulation with HPLC, the changes in the relative content of nomilin and its transformation products were analyzed, with its structural transformation pattern during processing identified. Additionally, RAW264.7 cells were induced with lipopolysaccharides(LPSs) to establish an inflammatory model, and the anti-inflammatory activity of nomilin and its transformation product, namely obacunone was evaluated. The results indicated that as processing progressed, E~*ab and L~* values showed a downward trend; a~* values exhibited a slow increase over a certain period, followed by no significant changes, and b~* values remained stable with no significant changes over a certain period and then started to decrease. The limonin content remained barely unchanged; the nomilin content decreased, and the obacunone increased significantly. The changing trends in content and color parameters during salt-processing and stir-frying were basically consistent. The content of nomilin and obacunone was significantly correlated with the colorimetric values(L~*, a~*, b~*, and E~*ab), while limonin content showed no significant correlation with these values. By analyzing HPLC patterns of nomylin at different heating temperatures and time, it was found that under conditions of 200-250 ℃ for heating of 5-60 min, the content of nomilin significantly decreased, while the obacunone content increased pronouncedly. The in vitro anti-inflammatory activity results indicated that compared to the model group, the group with a high concentration of nomilin and the groups with varying concentrations of obacunone showed significantly reduced release of nitric oxide(NO)(P<0.01). When both were at the same concentration, obacunone showed better performance in inhibiting NO release. In this study, the obvious correlation between the color and content of major components during the processing of CRS samples was identified, and the dynamic patterns of quality change in CRS samples during processing were revealed. Additionally, the study revealed and confirmed the transformation of nomilin into obacunone during processing, with the in vitro anti-inflammatory activity of obacunone significantly greater than that of nomilin. These findings provided a scientific basis for CRS processing optimization, tablet quality control, and its clinical application.
Mice
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
RAW 264.7 Cells
;
Limonins/chemistry*
;
Chromatography, High Pressure Liquid
;
Citrus/chemistry*
;
Color
;
Benzoxepins/chemistry*
;
Anti-Inflammatory Agents/chemistry*

Result Analysis
Print
Save
E-mail