1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Application of artificial intelligence and automated scripts in3D printing brachytherapy
Wentai LI ; Jiandong ZHANG ; Zhihe WANG ; Xiaozhen QI ; Yan DING ; Baile ZHANG ; Wenjun MA ; Yao ZHAI ; Weiwei ZHOU ; Yanan SUN ; Xin ZHANG
Chinese Journal of Radiological Health 2025;34(3):419-425
Objective To explore the efficiency improvement in segmenting neural network with the application of Transformer + U-Net artificial intelligence (AI) and modeling with the application of Python scripts in three-dimensional (3D) printing brachytherapy. Methods A Transformer + U-Net AI neural network model was constructed, and Adam optimizer was used to ensure rapid gradient descent. Computed tomography or magnetic resonance imaging data of patients were standardized and processed as self-made data sets. The training set was used to train AI and the optimal result weight parameters were saved. The test set was used to evaluate the AI ability. Python programming language was used to write an automated script to obtain the output segmentation image and convert it to the STL file for import. The source applicator and needle could be automatically modeled. The time of automatic segmentation and modeling and the time of manual segmentation and modeling were entered by two people, and the difference was verified by paired t-test. Results Dice similarity coefficient (DSC), mean intersection over union (MIOU), and Hausdorff distance (HD95) were used for evaluation. DSC was
7.Leveraging genetic differences and Mendelian randomization to dissect the causal link and shared etiology between diabetic nephropathy and diabetic retinopathy
Guoxin DING ; Jing WANG ; Xian WANG ; Zhou ZHANG ; Xin XIAO ; Yingqi LI
International Eye Science 2025;25(11):1838-1847
AIM: To investigate the genetic association and potential causal relationship between diabetic nephropathy(DN)and diabetic retinopathy(DR), and to elucidate their shared molecular mechanisms through differential gene expression analysis and Mendelian randomization(MR).METHODS: Transcriptomic data of DN and DR were obtained from the Gene Expression Omnibus(GEO)database and analyzed for differentially expressed genes(DEGs). Genes meeting the significance threshold(log2FC>1, P<0.05)were identified, followed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis to explore shared biological pathways. Using genome-wide association study(GWAS)summary statistics for DN and DR, two-sample MR analysis was performed, with DN as the exposure and DR as the outcome. The causal effect was primarily estimated with the inverse-variance weighted(IVW)method, and sensitivity analyses were conducted to assess robustness.RESULTS: MR analysis revealed that DN significantly increased the risk of DR. IVW estimates indicated that the odds ratio(OR)for non-proliferative DR(NPDR)was 3.23(95% CI: 2.12-4.95, P<0.001), and the OR for proliferative DR(PDR)was 1.10(95% CI: 1.06-1.15, P<0.001). DEG analysis identified several key genes, including FN1, COL1A2, and THBS2. FN1 and COL1A2 are involved in extracellular matrix remodeling and fibrosis, contributing to vascular permeability alterations and microvascular damage in diabetic complications. THBS2 is closely associated with angiogenesis and vascular homeostasis, suggesting its potential role in DR. KEGG enrichment analysis showed that these DEGs were mainly enriched in advanced glycation end products(AGEs)-RAGE signaling, extracellular matrix degradation, and oxidative stress pathways, all of which are highly relevant to the pathogenesis of DN and DR.CONCLUSION: This study demonstrates the genetic association between DN and DR using MR and DEGs analyses. The shared mechanisms, particularly involving extracellular matrix remodeling, inflammatory response, and angiogenesis, may serve as novel therapeutic targets and provide a theoretical basis for the early diagnosis and targeted treatment of diabetic complications.
8.Research advances in traditional Chinese medicine for the prevention and treatment of inflammation-to-cancer transformation in chronic hepatitis
Simiao YU ; Sici WANG ; Haocheng ZHENG ; Yongqiang SUN ; Jing JING ; Tingting HE ; Liping WANG ; Aozhe ZHANG ; Xin WANG ; Xia DING ; Ruilin WANG
Journal of Clinical Hepatology 2025;41(9):1888-1895
Primary liver cancer is one of the most common malignant tumors of the digestive system, and the “inflammation-to-cancer transformation” (ICT) of chronic hepatitis is the core pathological process of the progression of chronic hepatitis to liver cancer. Persistent and uncontrolled liver inflammation in patients with chronic hepatitis often leads to repeated liver tissue damage and repair, which gradually develops into liver fibrosis and cirrhosis, eventually leading to malignant transformation through the mechanisms such as gene mutation and microenvironment imbalance. ICT in chronic hepatitis is the key link between chronic hepatitis and liver cancer, and its dynamic evolution involves various pathogenic factors such as dampness, heat, deficiency, toxin, and stasis; among which damp-heat and vital energy deficiency are the initiating factors for ICT of chronic hepatitis, while intermingled stasis and toxin are the key pathological products that promote malignant transformation. Based on the concept of preventive treatment, traditional Chinese medicine can effectively delay and even block the ICT of chronic hepatitis by regulating inflammation, metabolism, and abnormal cell proliferation through multiple targets, which provides important strategies and research directions for the prevention and treatment of liver cancer.
9.Comprehensive analysis of insulin products complex disulfide bonds structure by high resolution mass spectrum
Xin-yue HU ; Xiao-li DING ; Yue SUN ; Hui ZHANG ; Jing LI ; Cheng-gang LINAG
Acta Pharmaceutica Sinica 2024;59(1):188-197
The correct pairing of disulfide bonds maintains the correct folding mode and high-level structure formation of peptides and protein drugs, which is crucial for the quality control of products. In order to ensure that the disulfide bonds are correctly paired, disulfide bond analysis is an essential part of peptides and protein drug characterization. Mass spectrometry can be used to analyze disulfide bonds. However, insulin and its analogues have two pairs of disulfide bonds without restriction enzyme cutting site. Conventional collision-induced dissociation (CID) and high-energy induced cleavage (HCD) cannot accurately locate the complex disulfide bond. In our study, three methods were used to localize the complex disulfide, including enzyme digestion combined with key peptide fragment in source decay (ISD) fragmentation method, enzyme digestion combined with partial reduction alkylation method, intact protein source ISD and electron transfer dissociation (ETD) cleavage method, The applicability of insulin aspart, insulin lispro and insulin glargine were also investigated. This study provides a new way for the quality control of disulfide bonding mode of insulin and its analogues, and also provides a reference for the disulfide bond localization of peptides or proteins containing this complex disulfide bond.
10.Effects of salvianolic acid B on anti-oxidative stress of umbilical cord mesenchymal stem cells
Yu-Ling LUAN ; Ling-Xiao ZHANG ; Xin-Yue DING ; Zong-Jun LIU
The Chinese Journal of Clinical Pharmacology 2024;40(10):1434-1437
Objective To investigate the effect of salvianolic acid B on the antioxidant stress capacity of human umbilical cord mesenchymal stem cells(HUCMSCs)and to improve the clinical application efficiency of mesenchymal stem cells.Methods The 5th generation HUMSCs were used for the experiment and divided into control group,model group,and experimental-L,-M,-H groups.The control group was cultured normally;the model group was treated with 800 μmol·L-1 hydrogen peroxide(H2 O2)for 2 h;and the experimental-L,-M,-H groups were pretreated with 2,10,20 μg·mL-1salvianolic acid B for 24 h before adding 800 μmol·L-1 H2 O2 for 2 h.The levels of glutathione(GSH),superoxide dismutase(SOD),and malondialdehyde(MDA)in the cell supernatant of each group were detected using test kits;real-time fluorescence quantitative reverse transcription polymerase chain reaction was used to detect the mRNA expression of apoptosis-related genes Caspase 1,and B-cell lymphoma-2(Bcl-2).Results After treatment with 800 μmol·L-1H2 O2 for 2 h,the levels of MDA in the cell supernatants of the control group,model group,and experimental-H group were(3.27±0.41),(6.50±0.21)and(4.79±0.40)nmol·mL-1,respectively;the GSH levels were(35.43±0.72),(20.13±0.58)and(32.30±3.87)μmoL·L-1;the SOD levels were(5.34±0.18),(3.34±0.20)and(5.09±0.15)U·mL-1;the expression of Caspase 1 mRNA were 1.02±0.21,2.78±0.26 and 2.37±0.32;the expression of Bcl-2 mRNA were 1.01±0.12,0.43±0.03 and 0.60±0.17.Compared with the control group,the above indexes in the model group were statistically significant(P<0.05,P<0.01).Compared with the model group,the above indexes in the experimental-H group were statistically significant(P<0.05,P<0.01).Conclusion Salvianolic acid B can reduce apoptosis caused by oxidative stress and enhance the antioxidant stress capacity of HUCMSCs.

Result Analysis
Print
Save
E-mail