1.The mechanism of effective traditional Chinese medicine components and prescriptions in treatment of chronic pancreatitis by intervening against pancreatic stellate cells
Ruyang CHENG ; Weining SONG ; Xin JIANG ; Yehao WANG ; Lin LIU ; Fang LU ; Shumin LIU
Journal of Clinical Hepatology 2025;41(4):793-800
Chronic pancreatitis (CP) is a chronic disease characterized by recurrent inflammation and progressive damage to pancreatic tissue, and its deterioration may increase the risk of pancreatic cancer in patients with CP, which seriously threatens the health of patients with CP. In recent years, studies on the pathogenesis of CP have mostly focused on the activation of pancreatic stellate cells (PSCs) and its role in pancreatic fibrosis. This article elaborates on the mechanism of action of PSCs in CP, summarizes the current status of research on effective traditional Chinese medicine components and prescriptions for intervention of PSCs in the treatment of chronic CP, and proposes the future research directions for effective traditional Chinese medicine components and prescriptions, so as to provide a reference for the clinical treatment of CP patients in the future.
2.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
3.Application of Lycii Fructus and Its Compound Formulas in Central Nervous System Diseases: A Review
Ruyang CHENG ; Weining SONG ; Xin JIANG ; Yehao WANG ; Chi ZHANG ; Zhendong ZHANG ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):273-281
The pathogenesis of central nervous system (CNS) diseases is complex, seriously affecting patients' physical and mental health and imposing a heavy economic burden on society. Western medicine shows limited efficacy in treating CNS diseases and is often associated with numerous adverse reactions and contraindications. Chinese medicine Lycii Fructus exhibits multiple pharmacological effects, including immune regulation, enhancement of hematopoietic function, liver protection, anti-tumor, hypoglycemic, antipyretic, anti-aging, and anti-radiation activities, and has gradually been applied in clinical treatment. In recent years, the active components of Lycii Fructus have attracted considerable attention for their potential therapeutic effects on CNS diseases. Studies indicate that these active components may exert neuroprotective effects through anti-inflammatory and antioxidant actions, inhibition of neuronal apoptosis, and repair of neuronal damage, involving multiple targets and pathways. This review summarizes the therapeutic effects of Lycii Fructus active components in CNS diseases over the past decade by searching PubMed, CNKI, Wanfang Data, and other electronic databases, aiming to provide new treatment strategies and insights for future research on Lycii Fructus in CNS disorders.
4.Impact of early detection and management of emotional distress on length of stay in non-psychiatric inpatients: A retrospective hospital-based cohort study.
Wanjun GUO ; Huiyao WANG ; Wei DENG ; Zaiquan DONG ; Yang LIU ; Shanxia LUO ; Jianying YU ; Xia HUANG ; Yuezhu CHEN ; Jialu YE ; Jinping SONG ; Yan JIANG ; Dajiang LI ; Wen WANG ; Xin SUN ; Weihong KUANG ; Changjian QIU ; Nansheng CHENG ; Weimin LI ; Wei ZHANG ; Yansong LIU ; Zhen TANG ; Xiangdong DU ; Andrew J GREENSHAW ; Lan ZHANG ; Tao LI
Chinese Medical Journal 2025;138(22):2974-2983
BACKGROUND:
While emotional distress, encompassing anxiety and depression, has been associated with negative clinical outcomes, its impact across various clinical departments and general hospitals has been less explored. Previous studies with limited sample sizes have examined the effectiveness of specific treatments (e.g., antidepressants) rather than a systemic management strategy for outcome improvement in non-psychiatric inpatients. To enhance the understanding of the importance of addressing mental health care needs among non-psychiatric patients in general hospitals, this study retrospectively investigated the impacts of emotional distress and the effects of early detection and management of depression and anxiety on hospital length of stay (LOS) and rate of long LOS (LLOS, i.e., LOS >30 days) in a large sample of non-psychiatric inpatients.
METHODS:
This retrospective cohort study included 487,871 inpatients from 20 non-psychiatric departments of a general hospital. They were divided, according to whether they underwent a novel strategy to manage emotional distress which deployed the Huaxi Emotional Distress Index (HEI) for brief screening with grading psychological services (BS-GPS), into BS-GPS ( n = 178,883) and non-BS-GPS ( n = 308,988) cohorts. The LOS and rate of LLOS between the BS-GPS and non-BS-GPS cohorts and between subcohorts with and without clinically significant anxiety and/or depression (CSAD, i.e., HEI score ≥11 on admission to the hospital) in the BS-GPS cohort were compared using univariable analyses, multilevel analyses, and/or propensity score-matched analyses, respectively.
RESULTS:
The detection rate of CSAD in the BS-GPS cohort varied from 2.64% (95% confidence interval [CI]: 2.49%-2.81%) to 20.50% (95% CI: 19.43%-21.62%) across the 20 departments, with a average rate of 5.36%. Significant differences were observed in both the LOS and LLOS rates between the subcohorts with CSAD (12.7 days, 535/9590) and without CSAD (9.5 days, 3800/169,293) and between the BS-GPS (9.6 days, 4335/178,883) and non-BS-GPS (10.8 days, 11,483/308,988) cohorts. These differences remained significant after controlling for confounders using propensity score-matched comparisons. A multilevel analysis indicated that BS-GPS was negatively associated with both LOS and LLOS after controlling for sociodemographics and the departments of patient discharge and remained negatively associated with LLOS after controlling additionally for the year of patient discharge.
CONCLUSION
Emotional distress significantly prolonged the LOS and increased the LLOS of non-psychiatric inpatients across most departments and general hospitals. These impacts were moderated by the implementation of BS-GPS. Thus, BS-GPS has the potential as an effective, resource-saving strategy for enhancing mental health care and optimizing medical resources in general hospitals.
Humans
;
Retrospective Studies
;
Male
;
Length of Stay/statistics & numerical data*
;
Female
;
Middle Aged
;
Adult
;
Psychological Distress
;
Inpatients/psychology*
;
Aged
;
Anxiety/diagnosis*
;
Depression/diagnosis*
5.Research progress in chemical constituents and processing methods of Aconiti Lateralis Radix Praeparata.
Jia-Hao HU ; Wen-Ru LI ; Qing-Xin SHI ; Cheng-Wu SONG
China Journal of Chinese Materia Medica 2025;50(6):1458-1470
This article aims to study the processing methods by exploring the main chemical constituents of Aconiti Lateralis Radix Praeparata and the toxicity-attenuating mechanisms. The relevant articles were retrieved from multiple databases with the time interval of 1960-2024, and the chemical constituents of Aconiti Lateralis Radix Praeparata and the toxicity-attenuating mechanisms of its processing methods were summarized. The review revealed that the chemical constituents of Aconiti Lateralis Radix Praeparata included 32 diester-type alkaloids, 36 monoester-type alkaloids, 43 alkanolamine-type alkaloids, and 8 lipid-type alkaloids. At the same time, other chemical constituents such as water-soluble alkaloids were also studied, and their pharmacological activities were summarized. The toxicity-attenuating mechanisms of the processing methods included constituent loss, hydrolysis, ester exchange, and ion-pair action. The processing methods of Aconiti Lateralis Radix Praeparata have developed from being traditional to modern, with simplified operation and increased retention amounts of active constituents, which have improved the efficacy of processed Aconiti Lateralis Radix Praeparata products and have facilitated the industrial production. However, the existing processing methods of Aconiti Lateralis Radix Praeparata cannot completely solve the problem of possible reduction in efficacy during toxicity attenuation. More toxicity-attenuating mechanisms and lipid-type alkaloids of Aconiti Lateralis Radix Praeparata should be explored, which is expected to reduce its toxicity while retaining its efficacy.
Aconitum/toxicity*
;
Drugs, Chinese Herbal/isolation & purification*
;
Alkaloids/chemistry*
;
Animals
;
Humans
6.Zhiwei Fuwei Pills regulate miRNA-21/Bcl-2 pathway to improve mitochondrial apoptosis in rats with precancerous lesions of gastric cancer.
Jiao-Jiao ZUO ; Rui-Ping SONG ; Peng-Cheng DOU ; Xin-Yi CHEN ; Zhuang-Zhuang FENG ; Jin SHU
China Journal of Chinese Materia Medica 2025;50(15):4342-4351
This study aimed to investigate the effects of Zhiwei Fuwei Pills on mitochondrial apoptosis in the rat model of precancerous lesions of gastric cancer(PLGC) based on the microRNA-21(miRNA-21)/B-cell lymphoma-2(Bcl-2) signaling pathway. Eighty-five 5-week-old male SPF-grade SD rats were selected, of which 75 were fed with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) for multifactorial modeling, and the PLGC model was established after 26 weeks. The rats were randomly grouped as follows: model, folic acid(0.002 g·kg~(-1)), low-dose(0.42 g·kg~(-1)) Zhiwei Fuwei Pills, medium-dose(0.84 g·kg~(-1)) Zhiwei Fuwei Pills, and high-dose(1.67 g·kg~(-1)) Zhiwei Fuwei Pills, with 15 rats in each group. Additionally, 10 rats were assigned to a blank group and administrated with an equivalent volume of normal saline by gavage. After four weeks of continuous drug administration, the gastric mucosal tissue was collected. Hematoxylin-eosin(HE) staining was performed to reveal the pathological changes in the gastric mucosa. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) was employed to detect apoptosis in gastric mucosal epithelial cells. RT-PCR was adopted to determine the mRNA levels of miRNA-21, phosphatase and tensin homolog(PTEN), Bcl-2, Bcl-2-associated X protein(Bax), and cysteinyl aspartate-specific protease 3(caspase-3). Western blot was employed to determine the protein levels of PTEN, Bcl-2, Bax, and caspase-3. Immunohistochemistry(IHC) was used to detect the positive expression of PTEN, Bcl-2, and Bax in the gastric mucosal tissue. Transmission electron microscopy(TEM) was employed to observe the morphological and structural changes in mitochondria. The results showed that compared with model group, the drug administration groups showed alleviated pathological changes, with increased apoptotic cells, down-regulated mRNA levels of miRNA-21 and Bcl-2, up-regulated mRNA and protein levels of PTEN, Bax, and caspase-3, and down-regulated protein level of Bcl-2. In addition, the drug administration groups exhibited mitochondrial swelling and rupture and reduction of cristae, which indicated mitochondrial apoptosis. These findings suggest that Zhiwei Fuwei Pills can effectively improve mitochondrial apoptosis in PLGC cells by regulating the miRNA-21/Bcl-2 signaling pathway.
Animals
;
MicroRNAs/metabolism*
;
Male
;
Apoptosis/drug effects*
;
Stomach Neoplasms/physiopathology*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Rats
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Mitochondria/genetics*
;
Signal Transduction/drug effects*
;
Precancerous Conditions/drug therapy*
;
Humans
;
PTEN Phosphohydrolase/genetics*
7.The IL-23p19 monoclonal antibody significantly alleviates nephritis in MRL/lpr lupus mice by modulating the Th17/Treg balance.
Wei CHENG ; Saizhe SONG ; Yu SHEN ; Cuiping LIU ; Xin CHANG ; Jian WU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):620-628
Objective To investigate the therapeutic effects of interleukin 23p19(IL-23p19) monoclonal antibody in the MRL/lpr lupus-like mouse model. Methods A total of 36 female MRL/lpr mice aged 8 weeks were randomly divided into 6 groups: PBS group (blank control), IgG group (isotype IgG), dexamethasone (DEX) group (positive control), and three IL-23p19 monoclonal antibody treatment groups with different dose gradients: low dose (LD, 1 mg/kg), medium dose (MD, 3 mg/kg), and high dose (HD, 10 mg/kg). Drug intervention began at 12 weeks of age via tail vein injection. Urine protein levels were measured using urine protein test strips; serum anti-dsDNA antibody levels were detected by ELISA; serum creatinine and blood urea nitrogen levels were measured using an automatic biochemical analyzer; renal histopathological changes were analyzed by H&E and PAS staining; immunofluorescence was used to assess IgG and C3 immune complex deposition in kidney tissues; flow cytometry was employed to examine the expression of T helper 1(Th1), Th2, Th17, T follicular helper (Tfh), and regulatory T cells(Treg) cell subsets in the spleen; and RT-qPCR was used to detect the expression of related transcription factors in the spleen. Results IL-23p19 monoclonal antibody reduced urine protein levels, alleviated splenomegaly, improved renal function, and decreased anti-dsDNA antibody levels in MRL/lpr mice. It also mitigated glomerulonephritis and reduced renal immune complex deposition. Furthermore, IL-23p19 monoclonal antibody significantly suppressed the proportion of Th1 and Th17 cells while upregulating Treg cell proportion in the spleen. Additionally, it downregulated T-bet and retinoic acid receptor-related orphan receptor γt (RORγt) mRNA levels and upregulated forkhead box P3(FOXP3) mRNA levels in the spleen. Conclusions IL-23p19 monoclonal antibody demonstrates significant therapeutic effects in MRL/lpr mice, likely through modulation of the Th17/Treg cell balance.
Animals
;
Female
;
Mice, Inbred MRL lpr
;
T-Lymphocytes, Regulatory/drug effects*
;
Th17 Cells/drug effects*
;
Antibodies, Monoclonal/therapeutic use*
;
Interleukin-23 Subunit p19/immunology*
;
Mice
;
Lupus Nephritis/drug therapy*
;
Kidney/drug effects*
;
Antibodies, Antinuclear/blood*
8.Real-world efficacy and safety of azvudine in hospitalized older patients with COVID-19 during the omicron wave in China: A retrospective cohort study.
Yuanchao ZHU ; Fei ZHAO ; Yubing ZHU ; Xingang LI ; Deshi DONG ; Bolin ZHU ; Jianchun LI ; Xin HU ; Zinan ZHAO ; Wenfeng XU ; Yang JV ; Dandan WANG ; Yingming ZHENG ; Yiwen DONG ; Lu LI ; Shilei YANG ; Zhiyuan TENG ; Ling LU ; Jingwei ZHU ; Linzhe DU ; Yunxin LIU ; Lechuan JIA ; Qiujv ZHANG ; Hui MA ; Ana ZHAO ; Hongliu JIANG ; Xin XU ; Jinli WANG ; Xuping QIAN ; Wei ZHANG ; Tingting ZHENG ; Chunxia YANG ; Xuguang CHEN ; Kun LIU ; Huanhuan JIANG ; Dongxiang QU ; Jia SONG ; Hua CHENG ; Wenfang SUN ; Hanqiu ZHAN ; Xiao LI ; Yafeng WANG ; Aixia WANG ; Li LIU ; Lihua YANG ; Nan ZHANG ; Shumin CHEN ; Jingjing MA ; Wei LIU ; Xiaoxiang DU ; Meiqin ZHENG ; Liyan WAN ; Guangqing DU ; Hangmei LIU ; Pengfei JIN
Acta Pharmaceutica Sinica B 2025;15(1):123-132
Debates persist regarding the efficacy and safety of azvudine, particularly its real-world outcomes. This study involved patients aged ≥60 years who were admitted to 25 hospitals in mainland China with confirmed SARS-CoV-2 infection between December 1, 2022, and February 28, 2023. Efficacy outcomes were all-cause mortality during hospitalization, the proportion of patients discharged with recovery, time to nucleic acid-negative conversion (T NANC), time to symptom improvement (T SI), and time of hospital stay (T HS). Safety was also assessed. Among the 5884 participants identified, 1999 received azvudine, and 1999 matched controls were included after exclusion and propensity score matching. Azvudine recipients exhibited lower all-cause mortality compared with controls in the overall population (13.3% vs. 17.1%, RR, 0.78; 95% CI, 0.67-0.90; P = 0.001) and in the severe subgroup (25.7% vs. 33.7%; RR, 0.76; 95% CI, 0.66-0.88; P < 0.001). A higher proportion of patients discharged with recovery, and a shorter T NANC were associated with azvudine recipients, especially in the severe subgroup. The incidence of adverse events in azvudine recipients was comparable to that in the control group (2.3% vs. 1.7%, P = 0.170). In conclusion, azvudine showed efficacy and safety in older patients hospitalized with COVID-19 during the SARS-CoV-2 omicron wave in China.
9.The PGAM5-NEK7 interaction is a therapeutic target for NLRP3 inflammasome activation in colitis.
Cheng-Long GAO ; Jinqian SONG ; Haojie WANG ; Qinghong SHANG ; Xin GUAN ; Gang XU ; Jiayang WU ; Dalei WU ; Yueqin ZHENG ; Xudong WU ; Feng ZHAO ; Xindong LIU ; Lei SHI ; Tao PANG
Acta Pharmaceutica Sinica B 2025;15(1):349-370
The innate immune sensor NLRP3 inflammasome overactivation is involved in the pathogenesis of ulcerative colitis. PGAM5 is a mitochondrial phosphatase involved in NLRP3 inflammasome activation in macrophages. However, the role of PGAM5 in ulcerative colitis and the mechanisms underlying PGAM5 regulating NLRP3 activity remain unknown. Here, we show that PGAM5 deficiency ameliorates dextran sodium sulfate (DSS)-induced colitis in mice via suppressing NLRP3 inflammasome activation. By combining APEX2-based proximity labeling focused on PGAM5 with quantitative proteomics, we identify NEK7 as the new binding partner of PGAM5 to promote NLRP3 inflammasome assembly and activation in a PGAM5 phosphatase activity-independent manner upon inflammasome induction. Interfering with PGAM5-NEK7 interaction by punicalagin inhibits the activation of the NLRP3 inflammasome in macrophages and ameliorates DSS-induced colitis in mice. Altogether, our data demonstrate the PGAM5-NEK7 interaction in macrophages for NLRP3 inflammasome activation and further provide a promising therapeutic strategy for ulcerative colitis by blocking the PGAM5-NEK7 interaction.
10.Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.
Yahong CHENG ; Chengcheng GAI ; Yijing ZHAO ; Tingting LI ; Yan SONG ; Qian LUO ; Danqing XIN ; Zige JIANG ; Wenqiang CHEN ; Dexiang LIU ; Zhen WANG
Neuroscience Bulletin 2025;41(6):1021-1040
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Animals
;
MicroRNAs/metabolism*
;
Extracellular Vesicles/metabolism*
;
Mice
;
Recovery of Function/physiology*
;
Hypoxia-Ischemia, Brain/therapy*
;
Mice, Inbred C57BL
;
Antagomirs/administration & dosage*
;
Male
;
Animals, Newborn
;
Apoptosis/drug effects*
;
Brain Injuries/metabolism*
;
Glycoproteins
;
Peptide Fragments
;
Viral Proteins

Result Analysis
Print
Save
E-mail