1.Research progress on the role and mechanism of Wnt signaling pathway in the pathogenesis of myopia
Ze WANG ; Ruiping XIE ; Xue LIU
International Eye Science 2025;25(1):99-103
Myopia is an increasingly prevalent public health concern globally, with a complex pathogenesis involving the interplay of multiple signaling pathways and genes. The Wnt signaling pathway plays a crucial role in biological processes such as cell proliferation, differentiation, apoptosis, and tissue remodeling, and its role in myopia development has garnered significant attention in recent years. Studies have demonstrated that the Wnt signaling pathway influences the occurrence and progression of myopia by regulating the proliferation, differentiation, and apoptosis of retinal cells(including RPE cells and ipRGCs), as well as the proliferation of scleral fibroblasts and the expression of extracellular matrix components(such as type I collagen), thereby affecting scleral remodeling and axial length elongation. This paper summarizes the roles of the Wnt signaling pathway in myopia development within different ocular tissues(retina and sclera)and explores potential myopia prevention and treatment strategies based on this pathway, providing insights for further research and clinical management of myopia.
2.Polygonati Odorati Rhizoma Polysaccharides Ameliorate Hyperlipidemia in Mice by Regulating Gut Microbiota
Jingchen XIE ; Qianqian LIU ; Suhui XIONG ; Zhimin ZHANG ; Yuexin LIU ; Ping WU ; Duanfang LIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):84-92
ObjectiveTo explore the effect of Polygonati Odorati Rhizoma polysaccharides on hyperlipidemia in mice by modulating the gut microbiota. MethodsNinety male C57BL/6J mice were randomized into the following groups (n=15): control, model, simvastatin, low- (100 mg·kg-1), medium- (200 mg·kg-1), and high-dose (400 mg·kg-1) Polygonati Odorati Rhizoma polysaccharides groups. Other groups except the control group were fed with a high-fat diet for the modeling of hyperlipidemia, and drug interventions lasted for 12 weeks. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured by an automatic biochemical analyzer. The pathological changes in the liver and epididymal fat were observed by hematoxylin-eosin staining, and lipid accumulation in the liver was assessed by oil red O staining. The gut microbiota was analyzed by 16S rRNA gene sequencing. ResultsCompared with the control group, the model group exhibited an increase in body weight (P<0.01), along with marked elevations in serum levels of TC, TG, and LDL-C (P<0.05,P<0.01). Furthermore, the model group showcased increase in the liver index and epididymal fat coefficient (P<0.05), increased liver fat accumulation, enlargement of adipocytes in the epididymal fat, decreases in both alpha and beta diversity of the gut microbiota, and an increase in the relative abundance of Allobaculum (P<0.01). Compared with the model group, Polygonati Odorati Rhizoma polysaccharides suppressed the increase in body weight (P<0.01), lowered the serum levels of TC, TG, and LDL-C (P<0.05,P<0.01), reduced the liver index and epididymal fat coefficient (P<0.05), alleviated liver fat accumulation, and decreased the size of adipocytes in the epididymal fat. Furthermore, it enhanced the alpha and beta diversity of the gut microbiota in mice, reduced the relative abundance of Allobaculum, Erysipelotrichaceae, and Clostridium (P<0.01), and increased the relative abundance of Akkermansia and Blautia (P<0.01). ConclusionPolygonati Odorati Rhizoma polysaccharides can ameliorate hyperlipidemia induced by a high-fat diet in mice by regulating the diversity and composition of the gut microbiota.
3.Traditional Chinese Medicine Treats Sepsis by Regulating PI3K/Akt Pathway: A Review
Zhu LIU ; Jiawei WANG ; Jing YAN ; Jinchan PENG ; Mingyao XU ; Liqun LI ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):314-322
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms such as bacteria. In addition to the manifestations of systemic inflammatory response syndrome and primary infection lesions, critical cases often have manifestations of organ hypoperfusion. The morbidity and mortality of sepsis have remained high in recent years, which seriously affect the quality of life of the patients. The pathogenesis of sepsis is complicated, in which uncontrollable inflammation is a key mechanism. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway plays a key role in mediating inflammation in sepsis. The available therapies of sepsis mainly include resuscitation, anti-infection, vasoactive drugs, intensive insulin therapy, and organ support, which show limited effects of reducing the mortality. Therefore, finding new therapeutic drugs is a key problem to be solved in the clinical treatment of sepsis. In recent years, studies have shown that traditional Chinese medicine (TCM) can regulate the PI3K/Akt pathway via multiple pathways, multiple effects, and multiple targets to inhibit inflammation and curb the occurrence and development of sepsis, which has gradually become a hot spot in the prevention and treatment of sepsis. Moreover, studies have suggested that TCM has unique advantages in the treatment of sepsis. TCM can regulate the PI3K/Akt signaling pathway to inhibit inflammation, reduce oxidative stress, and control apoptosis in the prevention and treatment of sepsis. Despite the research progress, a systematic review remains to be performed regarding the TCM treatment of sepsis by regulating the PI3K/Akt signaling pathway. After reviewing relevant papers published in recent years, this study systematically summarizes the relationship between PI3K/Akt pathway and sepsis and the role of TCM in the treatment of sepsis, aiming to provide new ideas for the potential treatment of sepsis and the development of new drugs.
4.Yishen Tongluo Prescription Ameliorates Oxidative Stress Injury in Mouse Model of Diabetic Kidney Disease via Nrf2/HO-1/NQO1 Signaling Pathway
Yifei ZHANG ; Xuehui BAI ; Zijing CAO ; Zeyu ZHANG ; Jingyi TANG ; Junyu XI ; Shujiao ZHANG ; Shuaixing ZHANG ; Yiran XIE ; Yuqi WU ; Zhongjie LIU ; Weijing LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):41-51
ObjectiveTo investigate the effect and mechanism of Yishen Tongluo prescription in protecting mice from oxidative stress injury in diabetic kidney disease (DKD) via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) signaling pathway. MethodsSpecific pathogen-free (SPF) male C57BL/6 mice were assigned into a control group (n=10) and a modeling group (n=50). The DKD model was established by intraperitoneal injection of streptozotocin. The mice in the modeling group were randomized into a model group, a semaglutide (40 μg·kg-1) group, and high-, medium-, and low-dose (18.2, 9.1, 4.55 g·kg-1, respectively) Yishen Tongluo prescription groups, with 10 mice in each group. The treatment lasted for 12 weeks. Blood glucose and 24-h urine protein levels were measured, and the kidney index (KI) was calculated. Serum levels of creatinine (SCr), blood urea nitrogen (BUN), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were assessed. The pathological changes in the renal tissue were evaluated by hematoxylin-eosin, periodic acid-Schiff, periodic acid-silver methenamine, and Masson’s trichrome staining. Enzyme-linked immunosorbent assay kits were used to measure the levels of β2-microglobulin (β2-MG), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver fatty acid-binding protein (L-FABP), nitric oxide synthase (NOS), glutathione (GSH), total antioxidant capacity (T-AOC), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Immunohistochemical staining was performed to examine the expression of Kelch-like ECH-associated protein 1 (Keap1) and malondialdehyde (MDA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of factors in the Nrf2/HO-1/NQO1 signaling pathway. ResultsCompared with the control group, the DKD model group showed rises in blood glucose, 24-h urine protein, KI, SCr, BUN, and ALT levels, along with glomerular hypertrophy, renal tubular dilation, thickened basement membrane, mesangial expansion, and collagen deposition. Additionally, the model group showed elevated levels of β2-MG, NGAL, KIM-1, L-FABP, NOS, and 8-OHdG, lowered levels of GSH and T-AOC, up-regulated expression of MDA and Keap1, and down-regulated expression of Nrf2, HO-1, NQO1, and glutamate-cysteine ligase catalytic subunit (GCLC) (P<0.05). Compared with the model group, the semaglutide group and the medium- and high-dose Yishen Tongluo prescription groups showed reductions in blood glucose, 24-h urine protein, KI, SCr, BUN, and ALT levels, along with alleviated pathological injuries in the renal tissue. In addition, the three groups showed lowered levels of β2-MG, NGAL, KIM-1, L-FABP, NOS, and 8-OHdG, elevated levels of GSH and T-AOC, down-regulated expression of MDA and Keap1, and up-regulated expression of Nrf2, HO-1, NQO1, and GCLC (P<0.05). ConclusionYishen Tongluo prescription exerts renoprotective effects in the mouse model of DKD by modulating the Nrf2/HO-1/NQO1 signaling pathway, mitigating oxidative stress, and reducing renal tubular injuries.
5.Molecular biological research and molecular homologous modeling of Bw.03 subgroup
Li WANG ; Yongkui KONG ; Huifang JIN ; Xin LIU ; Ying XIE ; Xue LIU ; Yanli CHANG ; Yafang WANG ; Shumiao YANG ; Di ZHU ; Qiankun YANG
Chinese Journal of Blood Transfusion 2025;38(1):112-115
[Objective] To study the molecular biological mechanism for a case of ABO blood group B subtype, and perform three-dimensional modeling of the mutant enzyme. [Methods] The ABO phenotype was identified by the tube method and microcolumn gel method; the ABO gene of the proband was detected by sequence-specific primer polymerase chain reaction (PCR-SSP), and the exon 6 and 7 of the ABO gene were sequenced and analyzed. Homologous modeling of Bw.03 glycosyltransferase (GT) was carried out by Modeller and analyzed by PyMOL2.5.0 software. [Results] The weakening B antigen was detected in the proband sample by forward typing, and anti-B antibody was detected by reverse typing. PCR-SSP detection showed B, O gene, and the sequencing results showed c.721 C>T mutation in exon 7 of the B gene, resulting in p. Arg 241 Trp. Compared with the wild type, the structure of Bw.03GT was partially changed, and the intermolecular force analysis showed that the original three hydrogen bonds at 241 position disappeared. [Conclusion] Blood group molecular biology examination is helpful for the accurate identification of ambiguous blood group. Homologous modeling more intuitively shows the key site for the weakening of Bw.03 GT activity. The intermolecular force analysis can explain the root cause of enzyme activity weakening.
6.Mechanism of Yishen Tongluo Formula regulating the TLR4/MyD88/NF-κB signaling pathway to ameliorate pyroptosis in diabetic nephropathy mice
Yifei ZHANG ; Zijing CAO ; Zeyu ZHANG ; Xuehui BAI ; Jingyi TANG ; Junyu XI ; Jiayi WANG ; Yiran XIE ; Yuqi WU ; Xi GUO ; Zhongjie LIU ; Weijing LIU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):21-33
Objective:
To investigate the mechanism of Yishen Tongluo Formula in ameliorating renal pyroptosis in diabetic nephropathy mice by regulating the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway.
Methods:
Sixty C57BL/6 male mice were randomly divided into control (10 mice) and intervention groups (50 mice) using random number table method. The diabetes nephropathy model was established by intraperitoneally injecting streptozotocin(50 mg/kg). After modeling, the intervention group was further divided into model, semaglutide (40 μg/kg), and high-, medium-, and low-dose Yishen Tongluo Formula groups (15.6, 7.8, and 3.9 g/kg, respectively) using random number table method. The high-, medium-, and low-dose Yishen Tongluo Formula groups were administered corresponding doses of medication by gavage, the semaglutide group received a subcutaneous injection of semaglutide injection, and the control group and model groups were administered distilled water by gavage for 12 consecutive weeks. Random blood glucose levels of mice in each group were monitored, and the 24-h urinary protein content was measured using biochemical method every 4 weeks; after treatment, the serum creatinine and urea nitrogen levels were measured using biochemical method. The weight of the kidneys was measured, and the renal index was calculated. Hematoxylin and eosin, periodic acid-Schiff, periodic Schiff-methenamine, and Masson staining were used to observe the pathological changes in renal tissue. An enzyme-linked immunosorbent assay was used to detect urinary β2-microglobulin (β2-MG), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) levels. Western blotting and real-time fluorescence PCR were used to detect the relative protein and mRNA expression levels of nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3), Caspase-1, gasdermin D (GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18) in renal tissue. Immunohistochemistry was used to detect the proportion of protein staining area of the TLR4, MyD88, and NF-κB in renal tissue.
Results:
Compared with the control group, the random blood glucose, 24-h urinary protein, serum creatinine, urea nitrogen, and renal index of the model group increased, and the urine β2-MG, NGAL, and KIM-1 levels increased. The relative protein and mRNA expression levels of NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18 in renal tissue increased, and the proportion of TLR4, MyD88, and NF-κB protein positive staining areas increased (P<0.05). Pathological changes such as glomerular hypertrophy were observed in the renal tissue of the model group. Compared with the model group, the Yishen Tongluo Formula high-dose group showed a decrease in random blood glucose after 12 weeks of treatment (P<0.05). The Yishen Tongluo Formula high- and medium-dose groups showed a decrease in 24-h urinary protein, creatinine, urea nitrogen, and renal index, as well as decreased β2-MG, NGAL, and KIM-1 levels. NLRP3, Caspase-1, GSDMD, IL-1 β, and IL-18 relative protein and mRNA expression levels were also reduced, and the proportion of TLR4, MyD88, and NF-κB protein positive staining areas was reduced (P<0.05). Pathological damage to renal tissue was ameliorated.
Conclusion
Yishen Tongluo Formula may exert protective renal effects by inhibiting renal pyroptosis and alleviating tubular interstitial injury in diabetic nephropathy mice by regulating the TLR4/MyD88/NF-κB signaling pathway.
7.Mechanism of Xuefu Zhuyutang in Intervening in Ferroptosis in Rats with Coronary Heart Disease with Blood Stasis Syndrome Based on ACSL4 Signalling Pathway
Yi LIU ; Yang YANG ; Chang SU ; Peng TIAN ; Mingyun WANG ; Ruqian ZHONG ; Xuejiao XIE ; Qing YAN ; Qinghua PENG ; Qiuyan ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):27-38
ObjectiveTo investigate the mechanism of ferroptosis mediated by long-chain acyl-CoA synthetase 4 (ACSL4) signalling pathway in rats with coronary heart disease with blood stasis syndrome and the intervention effect of Xuefu Zhuyutang. MethodsSPF male SD rats were randomly divided into normal group, sham-operation group, model group, trimetazidine group (5.4 mg·kg-1), low-, medium-, and high-dose group (3.51, 7.02,14.04 g·kg-1) of Xuefu Zhuyutang. The coronary artery left anterior descending ligation method was used to prepare a model of coronary heart disease with blood stasis syndrome, and continuous treatment for 7 d was conducted, while the sham-operation group was only threaded and not ligated. The general macroscopic symptoms of the rats were observed, and indicators such as electrocardiogram, echocardiography, and blood rheology were detected. The pathological morphology of myocardial tissue was observed by hematoxylin-eosin (HE) staining, and the changes in mitochondria in myocardial tissue were observed by transmission electron microscopy. The level of iron deposition in myocardial tissue was observed by Prussian blue staining. The levels of 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-HETE were detected in serum by enzyme-linked immunosorbent assay. A biochemical colourimetric assay was used to detect the levels of Fe2+, lipid peroxidation (LPO), glutathione (GSH), and T-GSH/glutathione disulfide (GSSG) in myocardial tissue. DCFH-DA fluorescence quantitative assay was employed to detect the levels of reactive oxygen species (ROS). Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was adopted to detect the protein and mRNA expressions of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), ACSL4, and ly-sophosphatidylcholine acyltransferase3 (LPCAT3) in myocardial tissue. ResultsCompared with those in the normal group, the rats in the model group were poor in general macroscopic symptoms. The electrocardiogram showed widened QRS wave amplitude and increased voltage, bow-back elevation of the ST segments, elevated T waves, J-point elevation, and accelerated heart rate. Echocardiography showed a significant reduction in left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) (P<0.01). Blood rheology showed that the viscosity of the whole blood (low, medium, and high rate of shear) was significantly increased (P<0.01). HE staining showed an abnormal structure of myocardial tissue. There was a large area of myocardial necrosis and inflammatory cell infiltration and a large number of connective tissue between myocardial fibers. Transmission electron microscopy showed that the mitochondria were severely atrophy or swelling. The cristae were reduced or even broken, and the matrix was flocculent or even vacuolated. Prussian blue staining showed that there were a large number of iron-containing particles, and the iron deposition was obvious. The content of 12-HETE and 15-HETE in the serum was significantly increased (P<0.01). The content of Fe2+, LPO, and ROS in myocardial tissue was significantly increased (P<0.01). The content of GSH was significantly decreased (P<0.01), and T-GSH/GSSG was decreased (P<0.01). The protein and mRNA expressions of GPX4 and FTH1 in myocardial tissue were both significantly decreased (P<0.05, P<0.01), while those of ACSL4 and LPCAT3 increased significantly (P<0.01). Compared with the model group, the general macroscopic symptoms and electrocardiogram results of rats in low-, medium- and high-dose groups of Xuefu Zhuyutang were alleviated, and the differences in LVEF/LVFS ratios were all significantly increased (P<0.05, P<0.01). The differences in whole-blood viscosity (low, medium, and high rate of shear) were all significantly decreased (P<0.01). The results of HE staining and transmission electron microscopy showed that the morphology, structure, and mitochondria of cardiomyocytes were improved. The content of 12-HETE and 15-HETE in serum was reduced to different degrees in low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). The content of Fe2+, LPO, and ROS was significantly reduced in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and the content of GSH and T-GSH/GSSG was significantly increased (P<0.05, P<0.01). The protein and mRNA expressions of GPX4 and FTH1 were significantly increased to varying degrees in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and ACSL4 and LPCAT3 were decreased to different degrees in the low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). ConclusionXuefu Zhuyutang can regulate iron metabolism and anti-lipid oxidation reaction to mediate ferroptosis through the ACSL4 signalling pathway, thus exerting a protective effect on rats with coronary heart disease with blood stasis syndrome.
8.Varieties and Prescription Characteristics of Chinese Patent Medicines for Stroke in China
Jingdan ZHANG ; Wanping SUN ; Xiaoxia LIN ; Shuo ZHANG ; Xue ZHANG ; Jiahui YAO ; Yiming LIU ; Ming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):270-274
ObjectiveTo explore the listed varieties and prescription characteristics of Chinese patent medicines for stroke in China, explore the medication rules of Chinese medicine for stroke, and provide guidance for further clinical research and development of Chinese patent medicines. MethodsExcel 2021 and the Ancient and Modern Medical Record Cloud Platform (V2.3.5) were used to systematically mine and analyze the varieties and prescriptions of Chinese patent medicines for stroke in China. ResultsA total of 244 Chinese patent medicines (two for different dosage forms of the same prescription), 1 736 approval documents for Chinese patent medicines, 792 manufacturers, and 83 varieties of protected Chinese patent medicines were finally included in the database. The top three dosage forms were capsules (75), pills (53), and tablets (42). There were 28 Chinese patent medicines for stroke in the National Essential Drug Catalogue (2018), 129 in the National Essential Medical Insurance, Industrial Injury Insurance and Maternity Insurance Drug Catalogue (2023), and 4 in the National Non-prescription Drug Catalogue. Among the 138 prescriptions screened out, Chinese patent medicines mainly treated stroke patients with the syndrome of Qi deficiency and blood stasis. The top three most frequent medicinal herbs were Chuanxiong Rhizoma (63), Pheretima (47), and Salviae Miltiorrhizae Radix et Rhizoma (47). The medicinal herbs used were mainly warm, pungent, with the meridian tropism to the liver meridian. The correlation analysis showed that the herb pair with the highest support was Astragali Radix-Chuanxiong Rhizoma, and that with the highest confidence was Carthami Flos-Chuanxiong Rhizoma. Five herb combinations were identified based on the cluster analysis. ConclusionThe Chinese patent medicines for stroke mainly treat patients with the syndrome of Qi deficiency and blood stasis. The medicinal herbs used in the prescriptions mainly have the functions of activating blood and resolving stasis, extinguishing wind and stopping convulsions. Drug compatibility usually focuses on activating blood and resolving stasis, as well as expelling phlegm and opening orifices. This review of the varieties and prescription characteristics of Chinese patent medicines for stroke helps optimize clinical decision-making, guide drug research and development, promote medical research and scientific progress, and provide more effective support and guarantee for the treatment of stroke patients.
9.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.
10.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.


Result Analysis
Print
Save
E-mail