1.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
2.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
3.Application Status of Machine Learning in Assisted Diagnosis Techniques of Cardiovascular Diseases.
Pinliang LIAO ; Zihong WANG ; Miao TIAN ; Hong CHAI ; Xiaoyu CHEN
Chinese Journal of Medical Instrumentation 2025;49(1):24-34
In recent years, cardiovascular disease has become a common disease. With the development of machine learning and big data technologies, the processing ability of electrocardiogram (ECG) signals has been greatly enhanced through new computer technologies, enabling the auxiliary diagnosis technology for cardiovascular disease (CVD) to achieve new improvements. This article discusses the application of machine learning in ECG processing, especially in the auxiliary diagnosis of diseases. Firstly, the conventional signal preprocessing methods are introduced, and then the EEG signal processing methods based on feature extraction and fuzzy classification are explored. Secondly, the application of auxiliary diagnosis in CVD is further summarized. Finally, the advantages and disadvantages of the two methods are analyzed, and based on this, a design of an auxiliary diagnostic system compatible with the two methods is proposed, providing a new perspective for similar applied researches in the future.
Machine Learning
;
Cardiovascular Diseases/diagnosis*
;
Humans
;
Electrocardiography
;
Signal Processing, Computer-Assisted
;
Diagnosis, Computer-Assisted
;
Fuzzy Logic
;
Electroencephalography
4.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
5.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
6.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
7.Timing, surgical approach, and uterine manipulator use in total hysterectomy after loop electrosurgical excision procedure: Implications for perioperative risks in patients with high-grade squamous intraepithelial lesion.
Xiaoyu HOU ; Junyang LI ; Bingjie MEI ; Jiao PEI ; Mingfeng FENG ; Hong LIU ; Guonan ZHANG ; Dengfeng WANG
Chinese Medical Journal 2025;138(20):2672-2674
8.Heat stress affects expression levels of circadian clock gene Bmal1 and cyclins in rat thoracic aortic endothelial cells.
Xiaoyu CHANG ; Hanwen ZHANG ; Hongting CAO ; Ling HOU ; Xin MENG ; Hong TAO ; Yan LUO ; Guanghua LI
Journal of Southern Medical University 2025;45(7):1353-1362
OBJECTIVES:
To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.
METHODS:
Twenty male SD rats were randomized equally into control group and heat stress group. After exposure to 32 ℃ for 2 weeks in the latter group, the rats were examined for histopathological changes and Bmal1 expression in the thoracic aorta using HE staining and immunohistochemistry. In the cell experiments, cultured rat thoracic aortic endothelial cells (RTAECs) were incubated at 40 ℃ for 12 h with or without prior transfection with a Bmal1-specific small interfering RNA (si-Bmal1) or a negative sequence. In both rat thoracic aorta and RTAECs, the expressions of Bmal1, the cell cycle proteins CDK1, CDK4, CDK6, and cyclin B1, and apoptosis-related proteins Bax and Bcl-2 were detected using Western blotting. TUNEL staining was used to detect cell apoptosis in rat thoracic aorta, and the changes in cell cycle distribution and apoptosis in RTAECs were analyzed with flow cytometry.
RESULTS:
Compared with the control rats, the rats exposed to heat stress showed significantly increased blood pressures and lowered heart rate with elastic fiber disruption and increased expressions of Bmal1, cyclin B1 and CDK1 in the thoracic aorta (P<0.05). In cultured RTAECs, heat stress caused significant increase of Bmal1, cyclin B1 and CDK1 protein expression levels, which were obviously lowered in cells with prior si-Bmal1 transfection. Bmal1 knockdown also inhibited heat stress-induced increase of apoptosis in RTAECs as evidenced by decreased expression of Bax and increased expression of Bcl-2.
CONCLUSIONS
Heat stress upregulates Bmal1 expression and causes alterations in expressions of cyclins to trigger apoptosis of rat thoracic aorta endothelial cells, which can be partly alleviated by suppressing Bmal1 expression.
Animals
;
ARNTL Transcription Factors/genetics*
;
Male
;
Aorta, Thoracic/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Endothelial Cells/metabolism*
;
Apoptosis
;
Cells, Cultured
;
Heat-Shock Response
;
Cyclin B1/metabolism*
;
CDC2 Protein Kinase/metabolism*
;
Cyclins/metabolism*
;
RNA, Small Interfering
;
bcl-2-Associated X Protein/metabolism*
9.Dimethyl fumarate modulates M1/M2 macrophage polarization to ameliorate periodontal destruction by increasing TUFM-mediated mitophagy.
Liang CHEN ; Pengxiao HU ; Xinhua HONG ; Bin LI ; Yifan PING ; ShuoMin CHEN ; Tianle JIANG ; Haofu JIANG ; Yixin MAO ; Yang CHEN ; Zhongchen SONG ; Zhou YE ; Xiaoyu SUN ; Shufan ZHAO ; Shengbin HUANG
International Journal of Oral Science 2025;17(1):32-32
Periodontitis is a common oral disease characterized by progressive alveolar bone resorption and inflammation of the periodontal tissues. Dimethyl fumarate (DMF) has been used in the treatment of various immune-inflammatory diseases due to its excellent anti-inflammatory and antioxidant functions. Here, we investigated for the first time the therapeutic effect of DMF on periodontitis. In vivo studies showed that DMF significantly inhibited periodontal destruction, enhanced mitophagy, and decreased the M1/M2 macrophage ratio. In vitro studies showed that DMF inhibited macrophage polarization toward M1 macrophages and promoted polarization toward M2 macrophages, with improved mitochondrial function, inhibited oxidative stress, and increased mitophagy in RAW 264.7 cells. Furthermore, DMF increased intracellular mitochondrial Tu translation elongation factor (TUFM) levels to maintain mitochondrial homeostasis, promoted mitophagy, and modulated macrophage polarization, whereas TUFM knockdown decreased the protective effect of DMF. Finally, mechanistic studies showed that DMF increased intracellular TUFM levels by protecting TUFM from degradation via the ubiquitin-proteasomal degradation pathway. Our results demonstrate for the first time that DMF protects mitochondrial function and inhibits oxidative stress through TUFM-mediated mitophagy in macrophages, resulting in a shift in the balance of macrophage polarization, thereby attenuating periodontitis. Importantly, this study provides new insights into the prevention of periodontitis.
Dimethyl Fumarate/pharmacology*
;
Mitophagy/drug effects*
;
Animals
;
Mice
;
Macrophages/metabolism*
;
Periodontitis/prevention & control*
;
RAW 264.7 Cells
;
Oxidative Stress/drug effects*
;
Peptide Elongation Factor Tu/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Mitochondria/drug effects*
10.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*

Result Analysis
Print
Save
E-mail