1.Treatment of Parkinson's Disease with Traditional Chinese Medicine by Regulating BDNF/TrkB Signaling Pathway: A Review
Lulu JIA ; Ying LI ; Jiale YIN ; Nan JIA ; Xiaoxi LIU ; Li LING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):315-322
Parkinson's disease(PD) is the second most common neurodegenerative disease in the world, which seriously affects the lives of patients. With the acceleration of aging process, the number of patients continues to rise. Its main pathological features are aggregation of α-synuclein and degenerative death of dopaminergic neurons in the substantia nigra. However, the pathogenesis of PD is still unclear. According to reports, the brain-derived neurotrophic factor(BDNF)/tyrosine kinase receptor B(TrkB) signaling pathway is highly expressed and activated in dopaminergic neurons in the substantia nigra, which is closely related to neurophysiological processes such as neurogenesis, synaptic plasticity, neuroinflammation, and oxidative stress. It plays an important role in the occurrence and development of PD. At present, the treatment methods of Western medicine for PD are mainly based on drugs such as levodopa and dopamine agonists to alleviate motor symptoms, but with the increase of dose, the adverse reactions are significantly enhanced. Traditional Chinese medicine(TCM) has attracted people to explore its therapeutic effects on PD due to its characteristics of homology of medicine and food, economy, minor adverse reactions and multi-target action. Therefore, this paper systematically reviews the role of BNDF/TrkB pathway in the pathogenesis of PD and the mechanism of TCM formulas, extracts and monomers in the treatment of PD by regulating the BNDF/TrkB pathway according to retrieving the latest research reports at home and abroad, so as to provide a reference for the clinical application of related TCM and the development of new drugs for PD.
2.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
3.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
4.Global burden of non-communicable diseases attributable to kidney dysfunction with projection into 2040.
Jing CHEN ; Chunyang LI ; Ci Li Nong BU ; Yujiao WANG ; Mei QI ; Ping FU ; Xiaoxi ZENG
Chinese Medical Journal 2025;138(11):1334-1344
BACKGROUND:
Spatiotemporal disparities exist in the disease burden of non-communicable diseases (NCDs) attributable to kidney dysfunction, which has been poorly assessed. The present study aimed to evaluate the spatiotemporal trends of the global burden of NCDs attributable to kidney dysfunction and to predict future trends.
METHODS:
Data on NCDs attributable to kidney dysfunction, quantified using deaths and disability-adjusted life-years (DALYs), were extracted from the Global Burden of Diseases Injuries, and Risk Factors (GBD) Study in 2019. Estimated annual percentage change (EAPC) of age-standardized rate (ASR) was calculated with linear regression to assess the changing trend. Pearson's correlation analysis was used to determine the association between ASR and sociodemographic index (SDI) for 21 GBD regions. A Bayesian age-period-cohort (BAPC) model was used to predict future trends up to 2040.
RESULTS:
Between 1990 and 2019, the absolute number of deaths and DALYs from NCDs attributable to kidney dysfunction increased globally. The death cases increased from 1,571,720 (95% uncertainty interval [UI]: 1,344,420-1,805,598) in 1990 to 3,161,552 (95% UI: 2,723,363-3,623,814) in 2019 for both sexes combined. Both the ASR of death and DALYs increased in Andean Latin America, the Caribbean, Central Latin America, Southeast Asia, Oceania, and Southern Sub-Saharan Africa. In contrast, the age-standardized metrics decreased in the high-income Asia Pacific region. The relationship between SDI and ASR of death and DALYs was negatively correlated. The BAPC model indicated that there would be approximately 5,806,780 death cases and 119,013,659 DALY cases in 2040 that could be attributed to kidney dysfunction. Age-standardized death of cardiovascular diseases (CVDs) and CKD attributable to kidney dysfunction were predicted to decrease and increase from 2020 to 2040, respectively.
CONCLUSION
NCDs attributable to kidney dysfunction remain a major public health concern worldwide. Efforts are required to attenuate the death and disability burden, particularly in low and low-to-middle SDI regions.
Humans
;
Noncommunicable Diseases/epidemiology*
;
Global Burden of Disease
;
Disability-Adjusted Life Years
;
Male
;
Female
;
Risk Factors
;
Middle Aged
;
Kidney Diseases/epidemiology*
;
Bayes Theorem
;
Adult
;
Aged
;
Global Health
;
Quality-Adjusted Life Years
5.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
6.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
7.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
8.Regulation of autophagy on diabetic cataract under the interaction of glycation and oxidative stress
Rong WANG ; Pengfei LI ; Jiawei LIU ; Yuxin DAI ; Mengying ZHOU ; Xiaoxi QIAN ; Wei CHEN ; Min JI
International Eye Science 2025;25(12):1932-1937
Diabetic cataract, a prevalent ocular complication of diabetes mellitus, arises from a complex interplay of pathological mechanisms, with oxidative stress and glycation stress playing central roles. Autophagy, a critical cellular self-protection mechanism, sustains intracellular homeostasis by selectively degrading damaged organelles and misfolded proteins, thereby counteracting the detrimental effects of oxidative and glycation stress under hyperglycemic conditions. Emerging evidence indicates a synergistic interaction between glycation stress and oxidative stress, which may exacerbate autophagic dysfunction and accelerate the onset and progression of diabetic cataract. However, the precise molecular mechanisms underlying this relationship remain incompletely understood. This review systematically examines the regulatory role of autophagy inthe pathogenesis of diabetic cataract, with a particular focus on how autophagic impairment influences disease progression under the combined effects of glycation and oxidative stress. By elucidating these mechanisms, the paper aims to provide novel insights into molecular diagnostic approaches and targeted therapeutic strategies for diabetic cataract.
9.Interpretation on the Consensus on Targeted Drug Therapy for Spondyloarthritis
Xiaoxi YANG ; Xinping TIAN ; Mengtao LI ; Xiaomei LENG ; Yan ZHAO ; Xiaofeng ZENG
Medical Journal of Peking Union Medical College Hospital 2024;15(1):58-67
Spondyloarthritis (SpA) is a group of chronic inflammatory diseases which predominantly involve spine and/or peripheral joints. SpA can be disabling and seriously affect the quality of life and function of patients. With the increasing clinical use of targeted drug therapy, precise and standardized use becomes the focus. China's first Consensus on Targeted Drug Therapy for Spondyloarthritis was developed by National Clinical Research Center for Dermatologic and Immunologic Diseases using international norms for consensus development. The consensus addresses 13 important clinical questions, ranging from principles, patient eligibility, pre-treatment screening, treatment initiation, drug selection and switch, co-medication, to adverse event monitoring of targeted drug therapy in SpA, and recommends treatment for specific patients, playing a key role in guiding clinical practices.
10.Exploring the Practice of Enhancing Patient Experience based on Outpatient Whole Process Service Management
Chuan ZHANG ; Liyu WANG ; Xinyue XU ; Muxi YOU ; Weihong LI ; Xiaoxi JIA ; Wei TIAN
Chinese Hospital Management 2024;44(9):50-52,74
Improving the entire outpatient clinic experience is an important measure in the new era to enhance patients'sense of gain from medical treatment.Beijing Tongren Hospital Affiliated to Capital Medical University explores the establishment of a full-process outpatient service management system based on continuous improvement of medical services.Through the concept of forward service,it focuses on the patient's pre-diagnosis experience;the process is simplified and intelligently guided to optimize the patient's in-diagnosis experience;and continuous diagnosis and treatment Model innovation improves patients'post-diagnosis experience and creates a Chinese-style modern outpatient medical service model to continuously meet the people's growing needs for a better life.

Result Analysis
Print
Save
E-mail