2.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
3.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
4.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
5.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
6.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
7.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
8.Mechanism of Yishen Tongluo Prescription in Inhibiting Endoplasmic Reticulum Stress and Improving Apoptosis of Renal Tubular Epithelial Cells Based on PERK/ATF4/CHOP
Xuan SU ; Liang ZHAO ; Mengmeng WANG ; Jing DING ; Zhenqiang ZHANG ; Xiaowei ZHANG ; Jiangyan XU ; Zhishen XIE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):26-36
ObjectiveTo investigate the effect of Yishen Tongluo prescription (YSTLP) on apoptosis of renal tubular epithelial cells and explore the mechanism based on endoplasmic reticulum stress pathway of protein kinase R-like endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4)/transcription factor C/EBP homologous protein (CHOP). MethodThe db/db mice were randomly divided into model group, valsartan group (10 mg·kg-1), and low, middle, high-dose YSTLP groups (1, 2.5, 5 g·kg-1). Samples were collected after eight weeks of drug intervention. In addition, db/m mice in the same litter served as the control group. Human renal tubular epithelial cells (HK-2) were cultured in vitro and divided into the control group, advanced glycated end-product (AGE) group, and AGE + low, middle, and high-dose YSTLP groups (100, 200, 400 mg·L-1). TdT-mediated dUTP nick end labeling (TUNEL) staining was used to detect the apoptosis rate of HK-2 cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was conducted to detect the viability of HK-2 cells. Calcium fluorescence probe staining and luciferase reporter gene method were adopted to detect the luciferase activity of folded protein response element (UPRE) and endoplasmic reticulum stress. Immunohistochemical (IHC) analysis was carried out to measure the protein expressions of phosphorylated PKR (p-PERK), CHOP, and ATF4. Real-time polymerase chain reaction (Real-time PCR) was used to measure the mRNA expression levels of CHOP and X-box binding protein 1 (XBP1) in mouse kidney and HK-2 cells. Western blot was used to detect the protein expression level of p-PERK, PERK, CHOP, ATF4, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), and cleaved Caspase-3 in mouse kidney and HK-2 cells. ResultIn the cellular assay, HK-2 cell viability was significantly reduced, and the apoptosis rate was elevated in the AGE group compared with the control group (P<0.01). The mRNA and protein expression levels of apoptosis-related factor Bcl-2 were significantly reduced (P<0.01), and those of Bax were significantly increased (P<0.01). The protein expression level of cleaved Caspase-3 was significantly increased (P<0.01). Compared with the AGE group, YSTLP administration treatment resulted in elevated cell viability and reduced apoptosis rate (P<0.01). The mRNA and protein expression levels of Bcl-2 were significantly elevated in a time- and dose-dependent manner (P<0.01), and those of Bax were significantly reduced in a time- and dose-dependent manner. The protein expression level of cleaved Caspase-3 was significantly reduced in a time- and dose-dependent manner (P<0.01). The intracellular Ca2+ imbalance and UPRE luciferase fluorescence intensity were increased in the AGE group compared with the control group (P<0.01). The mRNA levels of endoplasmic reticulum stress-related factors CHOP and XBP1 were significantly increased (P<0.01), and the protein expression levels of p-PERK, CHOP, and ATF4 were significantly increased (P<0.05). Compared with the AGE group, YSTLP effectively improved intracellular Ca2+ imbalance in HK-2 cells and decreased UPRE luciferase fluorescence intensity in a dose-dependent manner (P<0.01). It reduced the mRNA levels of endoplasmic reticulum stress-related factors CHOP and XBP1 (P<0.01) and the protein expression levels of intracellular p-PERK, CHOP, and ATF4 in a dose- and time-dependent manner (P<0.01). In animal experiments, the protein expression level of Bcl-2 was significantly reduced(P<0.01), and that of cleaved Caspase-3 and Bax was significantly increased in the model group compared with the control group (P<0.05). The protein expression level of Bcl-2 was dose-dependently elevated, and that of cleaved Caspase-3 and Bax was dose-dependently decreased in the YSTLP groups compared with the model group (P<0.01). Compared with the control group, the mRNA expression levels of CHOP and XBP1 were significantly elevated in the model group (P<0.05, P<0.01), and the protein expression levels of p-PERK, CHOP, and ATF4 were significantly increased (P<0.05). Compared with the model group, YSTLP significantly decreased the mRNA expression levels of CHOP and XBP1 (P<0.01) and the protein expression levels of p-PERK, CHOP, and ATF4 (P<0.01). ConclusionYSTLP can effectively inhibit endoplasmic reticulum stress and improve apoptosis of renal tubular epithelial cells, and its mechanism may be related to the regulation of the PERK/AFT4/CHOP pathway.
9.Study on the mechanism of astragaloside Ⅰ inhibiting podocyte pyroptosis in diabetic kidney disease
Yafei DUAN ; Xiancong SHI ; Liang ZHAO ; Mingzhen LYU ; Xinqi REN ; Yulei GU ; Jiangyan XU ; Zhenqiang ZHANG ; Jinxin MIAO ; Zhishen XIE ; Xiaowei ZHANG
Journal of Beijing University of Traditional Chinese Medicine 2024;47(10):1408-1415
Objective To investigate the mechanism of astragaloside Ⅰ,the active constituent of milkvetch root,in inhibiting podocyte injury and improving diabetic kidney disease.Methods According to the body weight,60 male db/db mice were randomly divided into the model group,astragaloside Ⅰ low-dose group(10 mg/kg),astragaloside Ⅰ medium-dose group(20 mg/kg),astragaloside Ⅰ high-dose group(40 mg/kg),and valsartan group(10mg/kg),with 12 mice per group.Twelve db/db littermate control db/m mice were used as the control group.The drug was administered by gavage for 8 weeks.Transmission electron microscope was used to observe the ultrastructure of the kidney;immunohistochemistry and Western blotting were used to detect the expression of nephrotic protein(nephrin),a marker of renal podocytes;enzyme-linked immunosorbent assay was used to detect the contents of interleukin-1β(IL-1β)and interleukin-18(IL-18)in the serum of mice;Western blotting was used to detect the protein expressions of NOD-like receptor thermoprotein domain-related protein 3(NLRP3),cysteinyl aspartate specific proteinase 1(Caspase-1),and Gasdermin D(GSDMD)in kidney tissue.Results Compared with the control group,the glomeruli of the model group showed obvious podocyte loss and foot process fusion;the protein expression of nephrin was decreased(P<0.05);the contents of IL-1 β and IL-18 in serum were increased(P<0.05);the protein expressions of NLRP3,Cleaved-Caspase-1,and GSDMD-N were increased(P<0.05).Compared with the model group,the renal pathological damage in the astragaloside Ⅰ administration groups were alleviated;the protein expression of nephrin was increased(P<0.05);the contents of IL-1β and IL-18 in serum were decreased(P<0.05);the protein expressions of NLRP3,Cleaved-Caspase-1,and GSDMD-N were decreased(P<0.05).Conclusion Astragaloside Ⅰ may play a role in intervening diabetic kidney disease by inhibiting pyroptosis and improving podocyte injury.
10.Characteristics of rabies-exposed population in Wenzhou City from 2014 to 2023
WANG Jian ; XIE Huasen ; CHI Haichao ; LI Xiaowei ; LE Siyu ; NI Chaorong
Journal of Preventive Medicine 2024;36(8):710-713
Objective:
To investigate the characteristics of rabies-exposed population in Wenzhou City, Zhejiang Province from 2014 to 2023, so as to provide insights into the prevention and control of rabies.
Methods:
Data of rabies-exposed population in Wenzhou City from 2014 to 2023 were collected through Wenzhou Rabies-Exposed Population Summary Sheet reported by dog injury clinics. The species of animals causing injuries, exposure time, exposure grade, exposure site, and post-exposure treatment were descriptively analyzed.
Results:
Totally 709 900 patients were admitted to dog injury clinics in Wenzhou City from 2014 to 2023, and the exposure rate showed an increasing trend (Z=7.238, P<0.001), with an average annual exposure rate of 750.75/105. The number of cases with exposure to rabies peaked in July (79 230 cases, 11.16%) and August (78 570 cases, 11.07%). Dogs were predominant animals causing injuries (448 900 cases, 63.23%), and the exposure rate showed a downward trend (Z=-5.921, P<0.001); cats were the second (175 142 cases, 24.67%), and the exposure rate showed an upward trend (Z=23.314, P<0.001). The upper (379 695 cases, 53.49%) and lower limbs (287 521 cases, 40.50%) were the main exposure sites. There were 21 034 cases (2.96%) exposed to head and face, and the exposure rate of head and face showed an upward trend (Z=3.549, P<0.001). Grade II exposure was the most common (403 881 cases, 56.89%), and the exposure rate showed an upward trend (Z=8.769, P<0.001). The proportion of using human rabies immune globulin was 23.13% in Grade III exposed population, showing a downward trend (Z=-12.848, P<0.001).
Conclusions
The exposure rate of rabies in Wenzhou City showed an upward trend from 2014 to 2023, with July and August as the peak months of exposure. Injuries mainly caused by dogs, while the exposure rate of cat bites showed an upward trend. The proportion of using human rabies immune globulin needs to be improved.


Result Analysis
Print
Save
E-mail