1.Effect of Serum Containing Zhenwutang on Apoptosis of Myocardial Mast Cells and Mitochondrial Autophagy
Wei TANG ; Meiqun ZHENG ; Xiaolin WANG ; Zhiyong CHEN ; Chi CHE ; Zongqiong LU ; Jiashuai GUO ; Xiaomei ZOU ; Lili XU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):11-21
ObjectiveTo explore the effect of serum containing Zhenwutang on myocardial mast cell apoptosis induced by angiotensin Ⅱ (AngⅡ) and the mechanism of the correlation between apoptosis and mitochondrial autophagy. MethodsIn this experiment, AngⅡ and serum containing Zhenwutang with different concentrations were used to interfere with H9C2 cardiomyocytes for 24 h, and the survival rate of H9C2 cardiomyocytes was detected by cell counting kit-8 (CCK-8) to screen the optimal concentration for the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of B-type natriuretic peptide (BNP) in cell culture supernatant, and immunofluorescence was used to detect the cell surface area to verify the construction of the myocardial mast cell model. Subsequently, the experiment was divided into a blank group (20% blank serum), a model group (20% blank serum + 5×10-5 mol·L-1 AngⅡ), low-, medium-, and high-dose (5%, 10% and 20%) serum containing Zhenwutang groups, an autophagy inhibitor group (1×10-4 mol·L-1 3-MA), and autophagy inducer group (1×10-7 mol·L-1 rapamycin). The apoptosis level of H9C2 cells and the changes of mitochondrial membrane potential were detected by flow cytometry. The lysosomal probe (Lyso Tracker) and mitochondrial probe (Mito Tracker) co-localization was employed to detect autophagy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-related X protein (Bax), and cytochrome C (Cyt C) in apoptosis-related pathways and the relative mRNA expression of ubiquitin ligase (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and p62 protein in mitochondrial autophagy-related pathways. Western blot was used to detect cleaved Caspase-3, cleaved Caspase-9, Bax, Bcl-2, and Cyt C in apoptosis-related pathways, phosphorylated ubiquitin ligase (p-Parkin), phosphorylated PTEN-induced kinase 1 (p-PINK1), p62, and Bcl-2 homology domain protein Beclin1 in mitochondrial autophagy-related pathways, and the change of microtubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ ratio. ResultsCCK-8 showed that when the concentration of AngⅡ was 5×10-5 mol·L-1, the cell activity was the lowest, and there was no cytotoxicity. At this concentration, the surface area of cardiomyocytes was significantly increased (P<0.01), and the content of BNP in the supernatant of culture medium was significantly increased (P<0.05). Therefore, AngⅡ with a concentration of 5×10-5 mol·L-1 was selected for the subsequent modeling of myocardial mast cells. Compared with the blank group, the model group and the autophagy inhibitor 3-MA group had a significantly increased apoptosis rate (P<0.01) and significantly decreased mitochondrial membrane potential (P<0.01). The results of immunofluorescence co-localization showed that compared with the blank group, the model group had a significantly decreased number of red and green fluorescence spots. The results of Real-time PCR showed that compared with that in the blank group, the relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 in the model group was significantly up-regulated (P<0.01), while the relative mRNA expression of Bcl-2, Parkin, and PINK1 was significantly down-regulated (P<0.01). In addition, the relative protein expression of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 was significantly up-regulated (P<0.01). The LC3Ⅱ/Ⅰ was significantly decreased, and the relative protein expression of Bcl-2, p-Parkin, p-PINK1, and Beclin1 was significantly down-regulated (P<0.01). Compared with the model group, the serum containing Zhenwutang groups and the autophagy inducer group had significantly decreased apoptosis rate (P<0.01), and the decrease ratio of mitochondrial membrane potential is significantly lowered (P<0.01) in a dose-dependent manner. Additionally, both red and green fluorescence spots became more in these groups. In the 3-MA group, the number of red and green fluorescence spots decreased significantly. The relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 was significantly down-regulated (P<0.05, P<0.01), while that of Bcl-2, Parkin, and PINK1 was significantly up-regulated (P<0.01). In the serum containing Zhenwutang groups, the relative protein expression levels of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 were significantly down-regulated (P<0.05,P<0.01). The LC3Ⅱ/Ⅰ was significantly increased, and the relative protein expression levels of Bcl-2, p-Parkin, p-PINK1, and Beclin1 were significantly up-regulated (P<0.01). ConclusionThe serum containing Zhenwutang can reduce the apoptosis of myocardial mast cells and increase mitochondrial autophagy. This is related to the inhibition of intracellular Bax/Bcl-2/Caspase-3 apoptosis pathway and regulation of Parkin/PINK1 mitochondrial autophagy pathway.
2.Comparison of the value of body measurement indicators in screening for metabolic syndrome
LI Jiawen ; XIONG Xiaomei ; WANG Yushan
Journal of Preventive Medicine 2025;37(2):163-167,172
Objective:
To explore the value of body measurement indicators in screening for metabolic syndrome (MS), so as to provide the basis for early detection and prevention of MS.
Methods:
The individuals who were 18 years old or above and underwent physical examinations at a tertiary hospital of Xinjiang Uygur Autonomous Region were selected using the convenience sampling method. Demographic information, lifestyle, waist circumference (WC) and blood biochemical indicators were collected through questionnaire surveys, physical examinations and laboratory tests. The associations of WC, waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), body roundness index (BRI), abdominal volume index (AVI), lipid accumulation product (LAP) and visceral adiposity index (VAI) with MS were analyzed using a multivariable logistic regression model. The screening values of these body measurement indicators for MS were assessed by receiver operating characteristic (ROC) curves.
Results:
A total of 37 921 individuals were recruited, including 20 666 males (54.50%) and 17 255 females (45.50%), and had a median age of 41.00 (interquartile range, 20.00) years. There were 7 988 cases of MS, with a detection rate of 21.06%. Multivariable logistic regression analysis showed that WC, WHR, LAP and VAI were statistically associated with MS (all P<0.05), and the risk of MS increased with the levels of these indicators (all Ptrend<0.05), after adjusting for confounding factors (gender, age, lifestyle, etc.). The area under the ROC curve (AUC) of LAP for screening MS was the highest among single indicators, at 0.930 (95%CI: 0.927-0.933), and the optimal cut-off value was 43.13, Youden's index was 0.720, the sensitivity was 88.01%, and the specificity was 84.04%. The combined indicators of WC×VAI for screening MS had the highest AUC, which was 0.937 (95%CI: 0.935-0.939), and the optimal cut-off value was 0.17, Youden's index was 0.730, the sensitivity was 91.88%, and the specificity was 81.07%. The DeLong test showed that the AUC of WC×VAI for screening MS was higher than that of WC, WHR, LAP and VAI, respectively (all P<0.05).
Conclusion
The value of combining WC and VAI for screening MS is higher than other body measurement indicators.
3.Analysis on Pharmacodynamic Material Basis and Mechanism of Famous Classical Formula Renshen Wuweizi Tang in Treatment of Spleen and Lung Qi Deficiency Syndrome
Shanshan LI ; Yute ZHONG ; Xiaomei XIANG ; Wei KANG ; Shufan ZHOU ; Ping WANG ; Haiyu XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):31-39
ObjectiveBased on ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS), network pharmacology and molecular docking techniques, to explore the pharmacodynamic material basis and mechanism of Renshen Wuweizi Tang in treating spleen-lung Qi deficiency syndrome. MethodsThe chemical components in the decoction of Renshen Wuweizi Tang were systematically characterized and identified by UPLC-Q-TOF-MS/MS, and network pharmacology was used to screen potential active ingredients, collect component targets and gene sets related to spleen-lung Qi deficiency syndrome, and obtain protein interaction relationships through STRING. Cytoscape 3.9.1 was used to construct a "formula-syndrome" association network and calculate topological feature values. Gene ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed on core genes to explore potential pharmacodynamic links, the average shortest path between the formula-drug target network and the pharmacodynamic link gene network was calculated to discover dominant pharmacodynamic links, and MCODE plugin was used to identify core gene clusters from the dominant pharmacodynamic links, which were validated using Gene Expression Omnibus(GEO), and molecular docking was performed between key components and core targets. ResultsOne hundred and thirty-seven components were identified in the negative ion mode, and eighty components were identified in the positive ion mode. After deduplication, a total of 185 components were identified, mainly composed of triterpenoid saponins(49) and flavonoids(54). Based on the "formula-syndrome" correlation network analysis, energy metabolism was determined to be the dominant pharmacodynamic link of Renshen Wuweizi Tang in the treatment of spleen-lung Qi deficiency syndrome. The results of molecular docking showed that 7 components(adenosine, atractylenolide Ⅱ, atractylenolide Ⅲ, ginsenoside Rg1, glycyrrhizin B2, glycyrrhizin E2 and campesterol) from 4 medicinal materials(Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, Glycyrrhizae Radix et Rhizoma and Poria) in this formula might regulate energy metabolism by acting on 6 targets, namely cyclic adenosine monophosphate-response element binding protein 1(CREB1), glyceraldehyde-3-phosphate dehydrogenase(GAPDH), interleukin(IL)-6, nuclear transcription factor(NF)-κB1, peroxisome proliferator-activated receptor α(PPARα), and tumor necrosis factor(TNF), thus improving the symptoms of diseases related to spleen-lung Qi deficiency syndrome. ConclusionThis study established a UPLC-Q-TOF-MS/MS for rapid characterization and identification of chemical components in the decoction of Renshen Wuweizi Tang, expanding the understanding of the material composition of this formula, and found that 7 components might act on the key advantageous pharmacodynamic link "energy metabolism" through 6 targets to improve the related symptoms of spleen-lung Qi deficiency syndrome. This can provide a reference for the subsequent exploration of the material benchmark and mechanism of the famous classical formula.
4.Dietary nutrition status and nutritional intervention strategy of 1302 patients with Alzheimer's disease
Yufang WANG ; Yuanfang ZHAO ; Xiaomei HAO ; Yining LIANG
Journal of Public Health and Preventive Medicine 2025;36(2):47-51
Objective To explore the dietary nutrition status and nutritional intervention strategy of patients with Alzheimer’s disease (AD). Methods Among the 1 332 patients with AD diagnosed at Xijing Hospital from January 2021 to December 2023 were enrolled as the study subjects. The dietary intake data of patients were collected through questionnaire surveys and dietary reviews. During the study period, 30 patients did not complete the intervention due to withdrawal or loss of follow-up. Based on the actual number of people who completed the intervention, AD patients were randomly divided into intervention group (n=651, individualized nutritional intervention strategy) and control group (n=651, routine nutritional intervention), and both groups were intervened for 3 months. The cognitive function (MMSE score and MoCA score), nutritional status (MNA scale, NRS-2002 scale), and quality of life (GQOL-74) of the two groups of AD patients were compared to evaluate the effectiveness of the intervention strategies. Results A total of 1 332 questionnaires were distributed, and 1 302 valid questionnaires were finally recovered, with an effective recovery rate of 97.75% (1 302/1 332). The survey results showed that there were no statistical differences in baseline characteristics and dietary nutrition status between the two groups of AD patients before intervention (P>0.05). After nutritional intervention, the cognitive function, quality of life, and nutritional status of patients in the intervention group were significantly improved. The MMSE score, MoCA score, MNA score, and GQOL-74 score of the intervention group were significantly higher than those of the control group, while the NRS-2002 score was lower than that of the control group (P<0.05). Conclusion Nutritional intervention strategy has a significant effect on improving nutritional status, cognitive function, and quality of life of AD patients.
5.Network meta-analysis of Insulin degludec and liraglutide injection versus Insulin glargine and lixisenatide injection in the treatment of type 2 diabetes mellitus
Xiaomei WANG ; Xiaoyan YOU ; Jiali QIN ; Yang LIU ; Xianying WANG
China Pharmacy 2025;36(7):874-880
OBJECTIVE To systematically evaluate the efficacy and safety of Insulin degludec and liraglutide injection (IDegLira) and Insulin glargine and lixisenatide injection(iGlarLixi) in the treatment of type 2 diabetes mellitus(T2DM), and provide an evidence-based basis for the clinical treatment of T2DM. METHODS Computerized searches of PubMed, Embase, the Cochrane Library, CNKI, Wanfang data and VIP were conducted with a time frame from the inception to August 2024. Randomized controlled trials(RCTs) were rigorously screened according to inclusion and exclusion criteria, from which information was extracted and included studies were evaluated for risk of bias. Network meta-analysis was performed using Stata 14.0 software. RESULTS A total of 15 RCTs, including 9 513 patients, were included, involving four treatment regimens: IDegLira, iGlarLixi, insulin degludec(IDeg), and insulin glargine(iGlar). The differences between IDegLira and iGlarLixi were not statistically significant(P>0.05) for the outcome indexes of glycosylated hemoglobin(HbA1c), fasting blood glucose, body weight, and the incidence of adverse events(P>0.05); for the outcome index of the incidence of hypoglycemic events, IDegLira was significantly superior to iGlarLixi [OR=0.41,95%CI(0.18,0.91),P<0.05]. Surface under the cumulative ranking curve(SUCRA) results showed that iGlarLixi(84.5%)>IDegLira(81.7%) in lowering HbA1c; IDegLira(71.3%)>iGlarLixi(20.0%) in lowering fasting blood glucose; IDegLira(90.7%)>iGlarLixi(61.8%) in lowering body weight; IDegLira(95.5%)>iGlarLixi(9.7%) in reducing the incidence of hypoglycemic events; and IDegLira(27.1%)>iGlarLixi(14.5%) in reducing the incidence of adverse events. CONCLUSIONS iGlarLixi has better therapeutic efficacy in reducing HbA1c; IDegLira has better therapeutic efficacy in reducing fasting blood glucose and body weight. IDegLira has the lowest risk of hypoglycemia.
6.Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats
Jingrong QU ; Bo WANG ; Yulong WANG ; Hao LI ; Xiaomei AN
The Korean Journal of Physiology and Pharmacology 2025;29(1):21-32
This study aims to investigate the effects of astragalus polysaccharide (APS) on diabetic retinopathy through the SHH-Gli1-AQP1 pathway. The anti-type 2 diabetes mellitus (T2DM) targets of APS were identified through comprehensive searches of drug and disease-related databases. A protein-protein interaction network was then constructed, followed by GO and KEGG enrichment analyses.Molecular docking simulations were performed to evaluate the interactions of APS and metformin with Gli1 and AQP1. An in vivo T2DM rat model was established via streptozotocin (STZ) injection and treated with metformin and varying doses of APS for 12 weeks. Histological changes in retinal cells were assessed using H&E and PAS staining. The expression levels of AQP1, Gli1, and SHH in the retina were measured using immunohistochemistry, Western blotting, immunofluorescence, and ELISA. Additionally, mRNA expression of AQP1, Gli1, and SHH was quantified by RT-qPCR. Bioinformatic analyses indicated that Gli1 and AQP1, key components of the SHH-Gli1-AQP1 signaling pathway, may be associated with T2DM. Subsequent experiments demonstrated that the STZ-induced T2DM rats exhibited significant retinal damage, which was notably mitigated by both APS and metformin treatments. Furthermore, the SHH-Gli1-AQP1 signaling pathway was found to be overactivated in STZ-induced T2DM rats. Treatment with APS and metformin significantly reduced the elevated expression levels of SHH, Gli1, and AQP1. APS effectively inhibits retinal damage of STZinduced T2DM rats by restraining the SHH-Gli1-AQP1 signaling pathway.
7.Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats
Jingrong QU ; Bo WANG ; Yulong WANG ; Hao LI ; Xiaomei AN
The Korean Journal of Physiology and Pharmacology 2025;29(1):21-32
This study aims to investigate the effects of astragalus polysaccharide (APS) on diabetic retinopathy through the SHH-Gli1-AQP1 pathway. The anti-type 2 diabetes mellitus (T2DM) targets of APS were identified through comprehensive searches of drug and disease-related databases. A protein-protein interaction network was then constructed, followed by GO and KEGG enrichment analyses.Molecular docking simulations were performed to evaluate the interactions of APS and metformin with Gli1 and AQP1. An in vivo T2DM rat model was established via streptozotocin (STZ) injection and treated with metformin and varying doses of APS for 12 weeks. Histological changes in retinal cells were assessed using H&E and PAS staining. The expression levels of AQP1, Gli1, and SHH in the retina were measured using immunohistochemistry, Western blotting, immunofluorescence, and ELISA. Additionally, mRNA expression of AQP1, Gli1, and SHH was quantified by RT-qPCR. Bioinformatic analyses indicated that Gli1 and AQP1, key components of the SHH-Gli1-AQP1 signaling pathway, may be associated with T2DM. Subsequent experiments demonstrated that the STZ-induced T2DM rats exhibited significant retinal damage, which was notably mitigated by both APS and metformin treatments. Furthermore, the SHH-Gli1-AQP1 signaling pathway was found to be overactivated in STZ-induced T2DM rats. Treatment with APS and metformin significantly reduced the elevated expression levels of SHH, Gli1, and AQP1. APS effectively inhibits retinal damage of STZinduced T2DM rats by restraining the SHH-Gli1-AQP1 signaling pathway.
8.Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats
Jingrong QU ; Bo WANG ; Yulong WANG ; Hao LI ; Xiaomei AN
The Korean Journal of Physiology and Pharmacology 2025;29(1):21-32
This study aims to investigate the effects of astragalus polysaccharide (APS) on diabetic retinopathy through the SHH-Gli1-AQP1 pathway. The anti-type 2 diabetes mellitus (T2DM) targets of APS were identified through comprehensive searches of drug and disease-related databases. A protein-protein interaction network was then constructed, followed by GO and KEGG enrichment analyses.Molecular docking simulations were performed to evaluate the interactions of APS and metformin with Gli1 and AQP1. An in vivo T2DM rat model was established via streptozotocin (STZ) injection and treated with metformin and varying doses of APS for 12 weeks. Histological changes in retinal cells were assessed using H&E and PAS staining. The expression levels of AQP1, Gli1, and SHH in the retina were measured using immunohistochemistry, Western blotting, immunofluorescence, and ELISA. Additionally, mRNA expression of AQP1, Gli1, and SHH was quantified by RT-qPCR. Bioinformatic analyses indicated that Gli1 and AQP1, key components of the SHH-Gli1-AQP1 signaling pathway, may be associated with T2DM. Subsequent experiments demonstrated that the STZ-induced T2DM rats exhibited significant retinal damage, which was notably mitigated by both APS and metformin treatments. Furthermore, the SHH-Gli1-AQP1 signaling pathway was found to be overactivated in STZ-induced T2DM rats. Treatment with APS and metformin significantly reduced the elevated expression levels of SHH, Gli1, and AQP1. APS effectively inhibits retinal damage of STZinduced T2DM rats by restraining the SHH-Gli1-AQP1 signaling pathway.
9.Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats
Jingrong QU ; Bo WANG ; Yulong WANG ; Hao LI ; Xiaomei AN
The Korean Journal of Physiology and Pharmacology 2025;29(1):21-32
This study aims to investigate the effects of astragalus polysaccharide (APS) on diabetic retinopathy through the SHH-Gli1-AQP1 pathway. The anti-type 2 diabetes mellitus (T2DM) targets of APS were identified through comprehensive searches of drug and disease-related databases. A protein-protein interaction network was then constructed, followed by GO and KEGG enrichment analyses.Molecular docking simulations were performed to evaluate the interactions of APS and metformin with Gli1 and AQP1. An in vivo T2DM rat model was established via streptozotocin (STZ) injection and treated with metformin and varying doses of APS for 12 weeks. Histological changes in retinal cells were assessed using H&E and PAS staining. The expression levels of AQP1, Gli1, and SHH in the retina were measured using immunohistochemistry, Western blotting, immunofluorescence, and ELISA. Additionally, mRNA expression of AQP1, Gli1, and SHH was quantified by RT-qPCR. Bioinformatic analyses indicated that Gli1 and AQP1, key components of the SHH-Gli1-AQP1 signaling pathway, may be associated with T2DM. Subsequent experiments demonstrated that the STZ-induced T2DM rats exhibited significant retinal damage, which was notably mitigated by both APS and metformin treatments. Furthermore, the SHH-Gli1-AQP1 signaling pathway was found to be overactivated in STZ-induced T2DM rats. Treatment with APS and metformin significantly reduced the elevated expression levels of SHH, Gli1, and AQP1. APS effectively inhibits retinal damage of STZinduced T2DM rats by restraining the SHH-Gli1-AQP1 signaling pathway.
10.Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats
Jingrong QU ; Bo WANG ; Yulong WANG ; Hao LI ; Xiaomei AN
The Korean Journal of Physiology and Pharmacology 2025;29(1):21-32
This study aims to investigate the effects of astragalus polysaccharide (APS) on diabetic retinopathy through the SHH-Gli1-AQP1 pathway. The anti-type 2 diabetes mellitus (T2DM) targets of APS were identified through comprehensive searches of drug and disease-related databases. A protein-protein interaction network was then constructed, followed by GO and KEGG enrichment analyses.Molecular docking simulations were performed to evaluate the interactions of APS and metformin with Gli1 and AQP1. An in vivo T2DM rat model was established via streptozotocin (STZ) injection and treated with metformin and varying doses of APS for 12 weeks. Histological changes in retinal cells were assessed using H&E and PAS staining. The expression levels of AQP1, Gli1, and SHH in the retina were measured using immunohistochemistry, Western blotting, immunofluorescence, and ELISA. Additionally, mRNA expression of AQP1, Gli1, and SHH was quantified by RT-qPCR. Bioinformatic analyses indicated that Gli1 and AQP1, key components of the SHH-Gli1-AQP1 signaling pathway, may be associated with T2DM. Subsequent experiments demonstrated that the STZ-induced T2DM rats exhibited significant retinal damage, which was notably mitigated by both APS and metformin treatments. Furthermore, the SHH-Gli1-AQP1 signaling pathway was found to be overactivated in STZ-induced T2DM rats. Treatment with APS and metformin significantly reduced the elevated expression levels of SHH, Gli1, and AQP1. APS effectively inhibits retinal damage of STZinduced T2DM rats by restraining the SHH-Gli1-AQP1 signaling pathway.


Result Analysis
Print
Save
E-mail