1.Effects of Shenfuhuang Formula (参附黄配方) on Potential Targets of Action in the Brain Tissue of Sepsis Model Mice:Transcriptomics-Based Exploration
Yuchen WANG ; Xuerui WANG ; Xiaolong XU ; Jingxia ZHAO ; Jiabo WANG ; Yuan GAO ; Weijun KONG ; Qingquan LIU
Journal of Traditional Chinese Medicine 2025;66(1):65-70
ObjectiveTo investigate the possible mechanism of Shenfuhuang Formula (参附黄配方) in prevention and treatment of epsis-associated encephalopathy from the perspective of brain genomics. MethodsC57BL/6 mice were randomly divided into sham surgery group, sepsis group, and Shenfuhuang group, with 20 mice in each group. The sepsis group and Shenfuhuang group were induced to develop sepsis by cecal ligation and puncture (CLP) procedure. At 4 hours after modelling, Shenfuhuang group were gavaged with 2.5 g/(kg·d) of Shenfuhuang Formula, 0.5 ml each time, at 12 hours intervals, for a total of 4 times after modelling. Sepsis group and sham surgery group were given 0.5 ml of purified water orally. At 48 hours after modeling, the transcriptome sequencing was used to explore the differential gene expression in the effects of Shenfuhuang Formula on the brain regions of septic mice, and real-time PCR and ELISA were later used to further validate the differential gene and proteins expression. ResultsA total of 4605 genes were differentially expressed in Shenfuhuang group compared with sepsis group, of which 2353 genes were up-regulated and 2252 genes were down-regulated. According to the results of previous publications, six key genes were screened, including serine/threonine-protein kinase (Nek1), myelin-associated glycoprotein (Mag), endothelial cell-specific tyrosine kinase receptor (Tek), a disintegrin and metalloproteinase with thrombospondin motifs 20 (Adamts20), lymphocyte antigen 86 (Ly86), and E3 ubiquitin-protein ligase (Traip). Further genetic and protein validation revealed that, compared to the sham surgery group, the mRNA levels and corresponding protein levels of Nek1, Mag, Tek, Adamts20, Ly86, and Traip in the brain tissue of septic mice significantly reduced (P<0.05). In comparison to the sepsis group, Shenfuhuang group showed significantly increased mRNA levels and corresponding protein levels of Nek1, Mag, Tek, Adamts20, Ly86, and Traip (P<0.05). ConclusionThe potential therapeutic targets of Shenfuhuang Formula for treating sepsis-associated encephalopathy may be related to the Nek1, Mag, Tek, Adamts20, Ly86, and Traip genes and their encoded proteins.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Severe COVID-19 and inactivated vaccine in diabetic patients with SARS-CoV-2 infection.
Yaling YANG ; Feng WEI ; Duoduo QU ; Xinyue XU ; Chenwei WU ; Lihua ZHOU ; Jia LIU ; Qin ZHU ; Chunhong WANG ; Weili YAN ; Xiaolong ZHAO
Chinese Medical Journal 2025;138(10):1257-1259
6.Intrathyroid thymic carcinoma: report of a case.
Xiaolong LAI ; Zhenju XU ; Ce WU ; Xiaoya WANG ; Xueyan ZHOU ; Jie QIU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(1):87-90
Objective: Intrathyroid thymic carcinoma(ITTC) is a rare thyroid tumor that lacks typical clinical manifestations and imaging features, making preoperative diagnosis challenging.The primary treatment for ITTC is radical surgery; however, the effectiveness of adjuvant radiotherapy and chemotherapy post-surgery is not well-established. This paper presents a case of ITTC , analyzing the clinical data and correlating it with the literature to explore the clinical manifestations, diagnostic approach, treatment, and prognosis of ITTC.
Humans
;
Prognosis
;
Thymoma
;
Thymus Neoplasms/diagnosis*
;
Thyroid Neoplasms/pathology*
7.CDH17-targeting CAR-NK cells synergize with CD47 blockade for potent suppression of gastrointestinal cancers.
Liuhai ZHENG ; Youbing DING ; Xiaolong XU ; Huifang WANG ; Guangwei SHI ; Yang LI ; Yuanqiao HE ; Yue GONG ; Xiaodong ZHANG ; Jinxi WEI ; Zhiyu DONG ; Jiexuan LI ; Shanchao ZHAO ; Rui HOU ; Wei ZHANG ; Jigang WANG ; Zhijie LI
Acta Pharmaceutica Sinica B 2025;15(5):2559-2574
Gastrointestinal (GI) cancers are a leading cause of cancer morbidity and mortality worldwide. Despite advances in treatment, cancer relapse remains a significant challenge, necessitating novel therapeutic strategies. In this study, we engineered nanobody-based chimeric antigen receptor (CAR) natural killer (NK) cells targeting cadherin 17 (CDH17) for the treatment of GI tumors. In addition, to enhance the efficacy of CAR-NK cells, we also incorporated CV1, a CD47-SIRPα axis inhibitor, to evaluate the anti-tumor effect of this combination. We found that CDH17-CAR-NK cells effectively eliminated GI cancers cells in a CDH17-dependent manner. CDH17-CAR-NK cells also exhibit potent in vivo anti-tumor effects in cancer cell-derived xenograft and patient-derived xenograft mouse models. Additionally, the anti-tumor activity of CDH17-CAR-NK cells is synergistically enhanced by CD47-signal regulatory protein α (SIRPα) axis inhibitor CV1, likely through augmented macrophages activation and an increase in M1-phenotype macrophages in the tumor microenvironment. Collectively, our findings suggest that CDH17-targeting CAR-NK cells are a promising strategy for GI cancers. The combination of CDH17-CAR-NK cells with CV1 emerges as a potential combinatorial approach to overcome the limitations of CAR-NK therapy. Further investigations are warranted to speed up the clinical translation of these findings.
8.Anti-tumor effects of phytosphingosine on leukemia cells by inducing cell apoptosis
Guancui YANG ; Jinyi LIU ; Peijie JIANG ; Yuxi XU ; Xiaolong TIAN ; Xiaoqi WANG ; Rui WANG ; Shijie YANG ; Qingxiao SONG ; Jin WEI ; Xi ZHANG
Journal of Army Medical University 2024;46(4):359-368
Objective To preliminarily investigate the anti-tumor effects of phytosphingosine(PHS)and the involvement of inducing apoptosis of leukemia cells.Methods Cellular model of leukemia was established in leukemia cell lines K562 and SUP-B15.CCK-8 assay and EdU assay were used to measure the viability and DNA synthesis of K562 and SUP-B15 cells.RNA-seq was carried out to verify the differentially expressed genes(DEGs)after PHS treatment.Gene Ontology(GO)enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were applied to analyze the involved functions and signaling pathways.Comparative Toxicogenomics Database(CTD)and Discovery Studio software were employed to predict the underlying targets of PHS and molecular docking.Cell apoptosis was detected by flow cytometry,mitochondrial membrane potential was evaluated by JC-1 probe,and protein expression of key molecules was validated by Western blotting.Results PHS inhibited the proliferation of K562 and SUP-B15 cells in a time-and dose-dependent manner.The half-maximal inhibitory concentration(IC50)of K562 cells was 17.67 and 12.52 pmol/L for 24 and 48 h,respectively,and the IC50 value of SUP-B15 cells was 17.58 and 14.86 μmol/L for 24 and 48 h,respectively.PHS treatment at a dose of 20 μmol/L for 48 h resulted in significant inhibition of DNA synthesis.GO enrichment analysis of the K562 cells showed that PHS might be involved in positive regulation of apoptotic process,plasma membrane and its integral components,and protein kinase binding and activity.Reverse predictive analysis showed that BCL-2 protein was the most likely target of PHS.PHS significantly increased the apoptotic rate of leukemia cells(P<0.05)in a dose-dependent manner,reduced the mitochondrial membrane potential,and down-regulated BCL-2 level(P<0.05)and up-regulated the levels of Cleaved caspase-3 and Cleaved caspase-9(P<0.05).Conclusion PHS may inhibit the proliferation of leukemia cells by inducing mitochondria-dependent apoptosis,possibly through PHS and BCL-2 interaction.
9.Novel programmed cell death in periprosthetic osteolysis
Xiaolong LIANG ; Kai ZHENG ; Dechun GENG ; Yaozeng XU
Chinese Journal of Tissue Engineering Research 2024;28(21):3393-3399
BACKGROUND:In addition to apoptosis,recent studies have discovered novel forms of programmed cell death in periprosthetic osteolysis,which is involved in regulating local chronic inflammation and the outcome of osteoblast and osteoclast under pathological conditions.This has an important value for the treatment and prognosis of periprosthetic osteolysis. OBJECTIVE:To provide new ideas and strategies for the prevention and treatment of periprosthetic osteolysis by summarizing studies on the novel forms of programmed cell death. METHODS:The first author used the computer to search the articles published from 2005 to 2022.Chinese search terms"wear particles,periprosthetic osteolysis,programmed cell death,apoptosis,autophagy,pyroptosis,necrotizing apoptosis,iron death"were used to search the databases of CNKI,WanFang and VIP.English search terms"osteolysis,wear debris,wear particles,peri*prosthetic osteolysis,PPOL,aseptic loosening,autophagy,regulated cell death,programmed cell death,apoptosis,pyroptosis,autophagic cell death,autophagy,necroptosis,ferroptosis"were used for search in PubMed and Web of Science databases.A total of 68 articles were finally included according to the inclusion criteria. RESULTS AND CONCLUSION:(1)Inadequate or excessive activation of autophagy can cause cell death,inhibit bone formation,and promote bone resorption,leading to bone metabolism disorders and osteolysis.(2)Recent studies have paid close attention to pyroptosis in periprosthetic osteolysis,where the Nod-like receptor,pyrin containing 3 inflammasome plays an important role in local inflammation.Inhibiting pyroptosis can effectively alleviate osteolysis.(3)In vitro studies have shown that necroptosis can inhibit the formation and function of osteoblasts and osteoclasts,affecting the process of osteolysis and destruction.(4)Ferroptosis is the newest form of programmed cell death,which is regulated by complex signaling pathways and mechanisms,but is not yet fully understood.(5)Autophagy,pyroptosis,necroptosis,and ferroptosis play important roles in the development of periprosthetic osteolysis,and their associated signaling pathways and genes require further investigation.
10.Exploration of the application of hospital quality monitoring system in medical quality management
Aiying CHEN ; Hongxi XU ; Xiaolong WANG
Modern Hospital 2024;24(1):62-64,67
Objective To explore and analyze the application effect of hospital quality monitoring system in medical quality management.Methods 800 patients from March 2021 to March 2022 were selected as the control group and routine medical quality management was adopted;and 800 patients from April 2022 to April 2023 were selected as the experimental group and the hospital quality monitoring system was adopted for medical quality management.Results The complication rate and re-admission rate after implementation were significantly lower than before implementation,with statistical significance(P<0.05).The satisfaction of patients after implementation was significantly higher than before implementation,and the difference was statis-tically significant(P<0.05).The score of medical service quality after implementation was significantly higher than before im-plementation,and the difference was statistically significant(P<0.05).Conclusion The application effect of hospital quality monitoring system in medical quality management is remarkable,and it is worthy of promotion.

Result Analysis
Print
Save
E-mail