1.RBM14 enhances transcriptional activity of p23 regulating CXCL1 expression to induce lung cancer metastasis.
Wen ZHANG ; Yulin PENG ; Meirong ZHOU ; Lei QIAN ; Yilin CHE ; Junlin CHEN ; Wenhao ZHANG ; Chengjian HE ; Minghang QI ; Xiaohong SHU ; Manman TIAN ; Xiangge TIAN ; Yan TIAN ; Sa DENG ; Yan WANG ; Xiaokui HUO ; Zhenlong YU ; Xiaochi MA
Acta Pharmaceutica Sinica B 2025;15(6):3059-3072
Metastasis serves as an indicator of malignancy and is a biological characteristic of carcinomas. Epithelial-mesenchymal transition (EMT) plays a key role in the promotion of tumor invasion and metastasis and in the enhancement of tumor cell aggressiveness. Prostaglandin E synthase 3 (p23) is a cochaperone for heat shock protein 90 (HSP90). Our previous study showed that p23 is an HSP90-independent transcription factor in cancer-associated inflammation. The effect and mechanism of action of p23 on lung cancer metastasis are tested in this study. By utilizing cell models in vitro and mouse tail vein metastasis models in vivo, the results provide solid evidence that p23 is critical for promoting lung cancer metastases by regulating downstream CXCL1 expression. Rather than acting independently, p23 forms a complex with RNA-binding motif protein 14 (RBM14) to facilitate EMT progression in lung cancer. Therefore, our study provides evidence for the potential role of the RBM14-p23-CXCL1-EMT axis in the metastasis of lung cancer.
2.Elemene as a binding stabilizer of microRNA-145-5p suppresses the growth of non-small cell lung cancer.
Meirong ZHOU ; Jiayue WANG ; Yulin PENG ; Xiangge TIAN ; Wen ZHANG ; Junlin CHEN ; Yue WANG ; Yu WANG ; Youjian YANG ; Yongwei ZHANG ; Xiaokui HUO ; Yuzhuo WU ; Zhenlong YU ; Tian XIE ; Xiaochi MA
Journal of Pharmaceutical Analysis 2025;15(3):101118-101118
Elemene is widely recognized as an effective anti-cancer compound and is routinely administered in Chinese clinical settings for the management of several solid tumors, including non-small cell lung cancer (NSCLC). However, its detailed molecular mechanism has not been adequately demonstrated. In this research, it was demonstrated that elemene effectively curtailed NSCLC growth in the patient-derived xenograft (PDX) model. Mechanistically, employing high-throughput screening techniques and subsequent biochemical validations such as microscale thermophoresis (MST), microRNA-145-5p (miR-145-5p) was pinpointed as a critical target through which elemene exerts its anti-tumor effects. Interestingly, elemene serves as a binding stabilizer for miR-145-5p, demonstrating a strong binding affinity (dissociation constant (K D) = 0.39 ± 0.17 μg/mL) and preventing its degradation both in vitro and in vivo, while not interfering with the synthesis of the primary microRNA transcripts (pri-miRNAs) and precursor miRNAs (pre-miRNAs). The stabilization of miR-145-5p by elemene resulted in an increased level of this miRNA, subsequently suppressing NSCLC progression through the miR-145-5p/mitogen-activated protein kinase kinase kinase 3 (MAP3K3)/nuclear factor kappaB (NF-κB) pathway. Our findings provide a new perspective on revealing the interaction patterns between clinical anti-tumor drugs and miRNAs.
3.Cilastatin protects against imipenem-induced nephrotoxicity inhibition of renal organic anion transporters (OATs).
Xiaokui HUO ; Qiang MENG ; Changyuan WANG ; Yanna ZHU ; Zhihao LIU ; Xiaodong MA ; Xiaochi MA ; Jinyong PENG ; Huijun SUN ; Kexin LIU
Acta Pharmaceutica Sinica B 2019;9(5):986-996
Imipenem is a carbapenem antibiotic. However, Imipenem could not be marketed owing to its instability and nephrotoxicity until cilastatin, an inhibitor of renal dehydropeptidase-I (DHP-I), was developed. In present study, the potential roles of renal organic anion transporters (OATs) in alleviating the nephrotoxicity of imipenem by cilastatin were investigated and in rabbits. Our results indicated that imipenem and cilastatin were substrates of hOAT1 and hOAT3. Cilastatin inhibited hOAT1/3-mediated transport of imipenem with IC values comparable to the clinical concentration, suggesting the potential to cause a clinical drug-drug interaction (DDI). Moreover, imipenem exhibited hOAT1/3-dependent cytotoxicity, which was alleviated by cilastatin and probenecid. Furthermore, cilastatin and probenecid ameliorated imipenem-induced rabbit acute kidney injury, and reduced the renal secretion of imipenem. Cilastatin and probenecid inhibited intracellular accumulation of imipenem and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells. Renal OATs, besides DHP-I, was also the target of interaction between imipenem and cilastatin, and contributed to the nephrotoxicity of imipenem. This therefore gives in part the explanation about the mechanism by which cilastatin protected against imipenem-induced nephrotoxicity. Thus, OATs can potentially be used as a therapeutic target to avoid the renal adverse reaction of imipenem in clinic.
4.Arenobufagin is a novel isoform-specific probe for sensing human sulfotransferase 2A1.
Xiangge TIAN ; Chao WANG ; Peipei DONG ; Yue AN ; Xinyu ZHAO ; Weiru JIANG ; Gang WANG ; Jie HOU ; Lei FENG ; Yan WANG ; Guangbo GE ; Xiaokui HUO ; Jing NING ; Xiaochi MA
Acta Pharmaceutica Sinica B 2018;8(5):784-794
Human cytosolic sulfotransferase 2A1 (SULT2A1) is an important phase II metabolic enzyme. The detection of SULT2A1 is helpful for the functional characterization of SULT2A1 and diagnosis of its related diseases. However, due to the overlapping substrate specificity among members of the sulfotransferase family, it is difficult to develop a probe substrate for selective detection of SULT2A1. In the present study, through characterization of the sulfation of series of bufadienolides, arenobufagin (AB) was proved as a potential probe substrate for SULT2A1 with high sensitivity and specificity. Subsequently, the sulfation of AB was characterized by experimental and molecular docking studies. The sulfate-conjugated metabolite was identified as AB-3-sulfate. The sulfation of AB displayed a high selectivity for SULT2A1 which was confirmed by reaction phenotyping assays. The sulfation of AB by human liver cytosols and recombinant SULT2A1 both obeyed Michaelis-Menten kinetics, with similar kinetic parameters. Molecular docking was performed to understand the interaction between AB and SULT2A1, in which the lack of interaction with Met-137 and Tyr-238 of SULT2A1 made it possible to eliminate substrate inhibition of AB sulfation. Finally, the probe was successfully used to determine the activity of SULT2A1 and its isoenzymes in tissue preparations of human and laboratory animals.
5.Correlation analysis between the chemical contents and bioactivity for the quality control of Alismatis Rhizoma.
Xiaoxv GAO ; Chengpeng SUN ; Zhenglong YU ; Jian CANG ; Xiangge TIAN ; Xiaokui HUO ; Lei FENG ; Xinguang LIU ; Chao WANG ; Baojing ZHANG ; Xiaochi MA
Acta Pharmaceutica Sinica B 2018;8(2):242-251
In order to clarify regions of production and to discriminate processing methods, quantitative and qualitative analyses for saccharides and terpenes in 35 batches of Alismatis Rhizoma were performed. Methodologies included HPLC-PDA, HPLC-VWD and UHPLC-MS , combined with principal component analysis (PCA) and partial least squares regression techniques (PLSR). The inhibitory effects of triterpenes and Alismatis Rhizoma extracts on lipase activity were evaluated . PLSR analysis revealed significant positive correlations ( = 0.5795) between the contents of triterpenes , , , and and the inhibitory effects of Alismatis Rhizoma. The present study establishes an effective method for simultaneous determination of multiple components, and identifies key bioactive triterpenes. These results can be used for systematic and novel analytical strategies for the quality control of Alismatis Rhizoma production.

Result Analysis
Print
Save
E-mail