1.Multidimensional analysis of accuracy of CTU, contrast-enhanced MRI and CEUS in qualitative diagnosis of renal space-occupying lesions
Linjie WU ; Ying YU ; Xiaojie BAI ; Zihao QI ; Hang ZHENG ; Zhongqiang GUO
Journal of Modern Urology 2025;30(1):48-52
[Objective] To compare the diagnostic accuracy of three imaging modalities, inlducing CT urography (CTU), contrast-enhanced MRI (CE-MRI), and contrast-enhanced ultrasound (CEUS) in the qualitative diagnosis of renal space-occupying lesions. [Methods] A retrospective analysis was performed on 542 patients with renal lesions confirmed by surgical pathology in our hospital during Jan.2019 and May 2024.The diagnostic results of CTU, CE-MRI and CEUS were compared and analyzed based on the patients' clinical and pathological data. [Results] The diagnostic accuracy rate of CTU, CE-MRI and CEUS were 84.50%, 83.14% and 86.14%, respectively.For the 161 patients who underwent all three examinations, CEUS was significantly more accurate than CTU (84.16% vs. 77.02%, P=0.018), while there was no significant difference between CTU or CEUS and CE-MRI (79.81%) (P>0.05). Further analysis found that for lesions ≤4 cm, the accuracy of the three examinations was as follows: CEUS=CTU 79.55%, CE-MRI 76.14%, with no significant difference (P>0.05). However, for lesions >4 cm, CEUS ranked the first, followed by CE-MRI and CTU (89.73% vs. 84.25% vs. 73.97%), and CEUS and CE-MRI were better than CTU (P<0.05). Additionally, for the diagnosis of clear cell renal carcinoma and benign renal space-occupying lesions, there was no statistically significant difference among the three imaging modalities (P>0.05), while for the qualitative diagnosis of non-clear cell renal carcinoma, CEUS ranked the first, followed by CE-MRI and CTU (83.87% vs. 74.19% vs. 56.45%), and CE-MRI and CEUS were better than CTU (P<0.05). [Conclusion] All of them have important diagnostic value, and the appropriate selection should be based on patients' specifc conditions.CEUS and CE-MRI are more accurate in the qualitative diagnosis of renal space-occupying lesions than CTU, especially for large lesions and non-clear cell carcinoma.
2.Mechanism and Combination Therapy of Berberine in Treatment of Nonalcoholic Fatty liver Disease:A Review
Xiaojie WANG ; Heng ZHANG ; Sutong LIU ; Lihui ZHANG ; Wenxia ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):269-281
Nonalcoholic fatty liver disease(NAFLD) is the most common chronic liver disease in the world. Because of its complex pathogenesis, high clinical prevalence and large population, it poses a great threat and challenge to public health in the world. Therefore, active intervention measures are needed. Currently, western medicine is effective in reducing weight, reducing liver fat content, improving glucose-lipid metabolism and insulin resistance. However, for patients with NAFLD-related fibrosis and cirrhosis, there is still a lack of sufficient histological evidence to support its benefits, and randomized controlled trials are still needed to clarify. Lifestyle intervention is an important cornerstone for the treatment of NAFLD, but there are many problems such as poor implementation and low compliance of patients, and the clinical efficacy is not ideal. Traditional Chinese medicine(TCM) has the significant advantages of multiple pathways and multiple targets. Berberine, the active ingredient of TCM, can interfere with the production of NAFLD from multiple pathways, including increasing energy consumption, weight loss, improving glucose-lipid metabolism, improving insulin resistance, anti-inflammatory, anti-oxidation, regulating intestinal flora, restoring bile acid homeostasis, anti-fibrosis and so on, which can play a positive role in the treatment of NAFLD. At the same time, it was found that the combination of BBR with Chinese and western medicines had significant advantages in promoting drug absorption, improving oral bioavailability, increasing the highest biological distribution in the liver, enhancing the overall therapeutic effect of NAFLD, and reducing adverse drug reactions, which could provide reference for clinical medication.
3.Mechanism of Piezo-type mechanosensitive ion channel component 1 in rat pressure injury
Jiaqi SUN ; Lu BIAN ; Wentao SHI ; Xuechao WU ; Xiaojie LU
Chinese Journal of Tissue Engineering Research 2025;29(8):1578-1584
BACKGROUND:The mechanisms underlying the occurrence of pressure injuries are complex,and it is not entirely clear which factors play a central role in the development of pressure injuries and how these factors operate. OBJECTIVE:To investigate the relationship between Piezo-type mechanosensitive ion channel component 1(Piezo1)and the occurrence of pressure injuries. METHODS:(1)Cellular experiment:Human immortalized keratinocytes(HaCaT)were treated with Yoda1,a Piezo1 agonist,at different concentrations.Cell viability,calcium ion influx,Piezo1,and apoptosis-related protein expression were detected.(2)Animal experiment:Twelve Sprague-Dawley rats were randomly divided into a control group and three experimental groups,with three rats in each group.The control group was not subjected to pressure,while in the three experimental groups,magnets with a thickness of 1,2,and 3 mm were used to press on both sides of the rats'back for 1 hour,respectively,to establish the animal models of pressure injuries.After modeling,all traumatic tissues were excised and subjected to hematoxylin-eosin,Masson,immunofluorescence staining and western blot assay. RESULTS AND CONCLUSION:Cellular experiments:The results of live/dead cell staining showed that HaCaT cell apoptosis increased with the increase of Yoda1 concentration(0,2.5,5,and 10 μmol/L),and calcium ion influx increased with the increase of Yoda1 concentration(0,5,and 10 μmol/L),as well as with the prolongation of treatment time.Western blot assay results showed an increase in the expression of BAX,TG2,and PIEZO1 and a decrease in the expression of the expression of Bcl-2 protein in HaCaT cells in 5 and 10 μmol/L Yoda1 groups compared with the control group(0 μmol/L Yoda1).Animal experiments:The results of hematoxylin-eosin and Masson staining showed that the skin structure of the three experimental groups was damaged at the compression site,there was subcutaneous fat liquefaction and necrosis,and collagen was sparse and disorganized,and damage to the skin structure at the compression site was aggravated with the increase of magnet thickness.Immunofluorescence staining and western blot results showed that compared with the control group,the expression of BAX,TG2,Yap1 and PIEZO1 proteins was elevated,and the expression of Bcl-2 proteins was lowered in the three experimental groups.Moreover,the expression of related proteins showed more significant changes with the increase of magnet thickness(pressure).To conclude,skin compression activates PIEZO1,leading to a significant influx of calcium ions.As the pressure increases,this ultimately results in cell apoptosis due to calcium overload.
4.Research Progress on Qingwen Baidu Decoction and Its Active Ingredients in Prevention of Lung Injury
Xiaojie LIN ; Xianan WEN ; Qiaolin ZENG ; Li WANG ; Yuanru ZHENG ; Jie ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):315-322
Acute lung injury (ALI) is a common and highly lethal clinical syndrome characterized by acute progressive respiratory failure. Currently, the treatment of ALI primarily involves respiratory support therapy and symptomatic pharmacotherapy, yet there is still a lack of specific and effective pharmacological treatments. Qingwen Baidu decoction is a traditional Chinese medicine formula that has the effects of clearing heat, removing toxin, cooling blood, and purging fire. Its pharmacological effects include anti-inflammatory, antipyretic, antibacterial, antiviral, sedative, and so on. The flavonoids, phenols, terpenes, and other components contained in this formula have strong pharmacological activity, which can regulate the inflammatory response caused and oxidative stress in ALI and maintain the integrity of alveolar-capillary barrier (ACB) by anti-apoptosis, anti-pathogen infection, and anti-pulmonary fibrosis, thereby improving the pathological changes of lung tissue. Among them, flavonoids have been reported more, and their mechanism of action is complex and diverse. For example, quercetin, luteolin, and baicalin act on multiple important targets, such as signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase 3 (MAPK3), etc. and participate in the regulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2(Nrf2)/Kelch-like ECH-associated protein 1 (Keap1), and silent information regulator 1 (SIRT1)/forkhead box protein O1 (FoxO1) signaling pathways, thereby intervening in pathological events such as inflammation, oxidative stress, cell apoptosis, and fibrosis. This paper aims to review the research progress on Qingwen Baidu decoction and its active ingredients in the prevention and treatment of lung injury in the expectation of providing reference for its subsequent pharmacological mechanism research and theoretical support for its clinical application and drug development in the treatment of ALI.
5.Causal relationship between mental disorders and hypercholesterolemia: a Mendelian randomization analysis
Qian ZOU ; Ni TANG ; Huanhui LIU ; Hanjing ZHANG ; Xiaojie MA
Sichuan Mental Health 2025;38(2):123-130
BackgroundMetabolic syndrome (MetS) is highly prevalent in patients with mental disorders, including elevated diastolic or systolic blood pressure, elevated fasting glucose, hypercholesterolemia, abdominal obesity and so on. As an important component of MetS, the relationship between hypercholesterolemia and mental disorder has been extensively reported, whereas few genome-wide association studies (GWAS) have been conducted to identify the causal role of mental disorders in hypercholesterolemia. ObjectiveTo explore the potential causal relationship between mental disorders and hypercholesterolemia by two-sample Mendelian randomization (MR) method. MethodsSummary data from GWAS were analyzed. Single nucleotide polymorphisms (SNPs) strongly associated with mental disorders were chosen as instrumental variables, and hypercholesterolemia was used as outcome variable. MR analysis utilized inverse-variance weighted (IVW), MR-Egger regression and weighted median estimation (WME) as the primary analytical tool, and supplemented by simple mode (SM) and weighted mode (WM). The causal relationship between mental disorders and the risk of hypercholesterolemia was illustrated in terms of odds ratio (OR). ResultsA total of 36 SNPs associated with mental disorders were identified as instrumental variables. The primary findings from IVW revealed existence of a causal relationship between mental disorders and hypercholesterolemia (IVW: OR=1.067, 95% CI: 1.026~1.109, P=0.001). Findings from the additional methods (MR-Egger regression, WME, SM, WM) were basically consistent with those reported in IVW method. Further verification indicated that the causal relationship between mental disorders and the risk of hypercholesterolemia was not affected by genetic polymorphism (P>0.05). The absence of heterogeneity was confirmed through Cochran's Q test and MR-Egger regression (P>0.05). Furthermore, no causal association in the reverse direction was found (P>0.05). ConclusionThere is a causal relationship between mental disorders and hypercholesterolemia, and patients with mental disorders may have an increased probability of suffering from hypercholesterolemia.
6.Characteristic ion Identification of Different Original Haliotidis Concha and Its Counterfeits
Xiaojie LIANG ; Guowei LI ; Lin ZHOU ; Qiping HU ; Muxiang LUO ; Jiehao TANG ; Xiangdong CHEN ; Liye PAN ; Dongmei SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):263-269
ObjectiveTo establish a method for the identification of Haliotidis Concha and its counterfeits, and to improve its quality evaluation method. MethodsA total of 17 batches of Haliotis discus hannai, 4 batches of H. ruber, 3 batches of H. laevigata, 3 batches of H. ovina, 3 batches of H. diversicolor, 3 batches of H. asinina, 3 batches of H. iris were collected. Ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive-Orbitrap-MS/MS) was used to analyze the hydrolysates of different original Haliotidis Concha and its counterfeits, and the potential characteristic ions of each species were screened by Venn diagram. UPLC-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS/MS) was used to validate the characteristic ions, and the specific detection method of the characteristic ions was established. ResultsA total of 1 182, 167, 47, 89, 104, 203, 424 potential characteristic ions were screened from H. discus hannai, H. ruber, H. laevigata, H. ovina, H. diversicolor, H. asinina and H. iris, respectively. And 9 characteristic ions were selected. The precision, stability and repeatability of the 9 characteristic ions in the established identification method met the requirements. Different original Haliotidis Concha and its counterfeits could detect their own characteristic ions, including m/z 631.83-886.48(double charge) and m/z 631.83-443.74(double charge) of H. discus hannai, m/z 699.28-232.11(double charge) and m/z 699.28-544.27(double charge) of H. ruber, m/z 535.76-752.37(double charge) and m/z 535.76-548.28(double charge) of H. laevigata, m/z 708.35-442.28(double charge) and m/z 708.35-215.14(double charge) of H. ovina, m/z 561.33-614.86(triple charge), m/z 561.33-468.28(triple charge), m/z 608.29-618.32(double charge) and m/z 608.29-390.21(double charge) of H. diversicolor, m/z 769.85-274.10(double charge), m/z 769.85-532.75(double charge), m/z 827.43-646.36(single charge), m/z 827.43-257.12(single charge) of H. asinina, and m/z 468.24-576.29(double charge) and m/z 468.24-505.26(double charge) of H. iris. ConclusionIn this study, a total of 9 characteristic ions are screened from 6 kinds of original Haliotidis Concha and its counterfeits, and a specific identification method is established, which is helpful to solve the limitations of the existing quality evaluation methods of Haliotidis Concha, and provide a basis for the production, circulation and medication quality.
7.Characteristic ion Identification of Different Original Haliotidis Concha and Its Counterfeits
Xiaojie LIANG ; Guowei LI ; Lin ZHOU ; Qiping HU ; Muxiang LUO ; Jiehao TANG ; Xiangdong CHEN ; Liye PAN ; Dongmei SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):263-269
ObjectiveTo establish a method for the identification of Haliotidis Concha and its counterfeits, and to improve its quality evaluation method. MethodsA total of 17 batches of Haliotis discus hannai, 4 batches of H. ruber, 3 batches of H. laevigata, 3 batches of H. ovina, 3 batches of H. diversicolor, 3 batches of H. asinina, 3 batches of H. iris were collected. Ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive-Orbitrap-MS/MS) was used to analyze the hydrolysates of different original Haliotidis Concha and its counterfeits, and the potential characteristic ions of each species were screened by Venn diagram. UPLC-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS/MS) was used to validate the characteristic ions, and the specific detection method of the characteristic ions was established. ResultsA total of 1 182, 167, 47, 89, 104, 203, 424 potential characteristic ions were screened from H. discus hannai, H. ruber, H. laevigata, H. ovina, H. diversicolor, H. asinina and H. iris, respectively. And 9 characteristic ions were selected. The precision, stability and repeatability of the 9 characteristic ions in the established identification method met the requirements. Different original Haliotidis Concha and its counterfeits could detect their own characteristic ions, including m/z 631.83-886.48(double charge) and m/z 631.83-443.74(double charge) of H. discus hannai, m/z 699.28-232.11(double charge) and m/z 699.28-544.27(double charge) of H. ruber, m/z 535.76-752.37(double charge) and m/z 535.76-548.28(double charge) of H. laevigata, m/z 708.35-442.28(double charge) and m/z 708.35-215.14(double charge) of H. ovina, m/z 561.33-614.86(triple charge), m/z 561.33-468.28(triple charge), m/z 608.29-618.32(double charge) and m/z 608.29-390.21(double charge) of H. diversicolor, m/z 769.85-274.10(double charge), m/z 769.85-532.75(double charge), m/z 827.43-646.36(single charge), m/z 827.43-257.12(single charge) of H. asinina, and m/z 468.24-576.29(double charge) and m/z 468.24-505.26(double charge) of H. iris. ConclusionIn this study, a total of 9 characteristic ions are screened from 6 kinds of original Haliotidis Concha and its counterfeits, and a specific identification method is established, which is helpful to solve the limitations of the existing quality evaluation methods of Haliotidis Concha, and provide a basis for the production, circulation and medication quality.
8.Feiyanning Inhibits Invasion and Metastasis of Non-small Cell Lung Cancer by Regulating EMT via TGF-β1/Smad Signaling Pathway
Xiaojie FU ; Jia YANG ; Kaile LIU ; Wenjie WANG ; Zhenye XU ; Zhongqi WANG ; Haibin DENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):110-120
ObjectiveTo explore the mechanism of the anti-cancer compound formula Feiyanning in inhibiting epithelial-mesenchymal transition (EMT) and invasion and metastasis of non-small cell lung cancer (NSCLC). MethodsCell proliferation and activity were assessed using the cell counting kit-8(CCK-8) assay to evaluate the effect of Feiyanning on the proliferation of A549 and H1299 cells. Wound healing and Transwell assays were conducted to examine Feiyanning's impact on the metastasis of A549 and H1299 cells. The effects of Feiyanning on EMT and the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway proteins in A549 and H1299 cells were detected by Western blot. Exogenous TGF-β1 was used to induce EMT in A549 and H1299 cells. The effects of Feiyanning on TGF-β1-induced NSCLC cell metastasis, EMT, and the TGF-β1/Smad pathway proteins were assessed by wound healing assay, Transwell assay, and Western blot. In vivo, an A549 lung metastasis model was established via tail vein injection in nude mice. A total of 28 SPF male nude mice were randomly divided into four groups: Model (NC) group, Feiyanning low-dose (FYN1) group, Feiyanning high-dose (FYN2) group, and the positive control group (TGF-β receptor kinase inhibitor SB431542 group). The corresponding interventions were performed. After 40 days, the mice were euthanized, and lung metastases were analyzed. The expression of E-cadherin, N-cadherin, p-Smad2, and p-Smad3 in each group was detected by immunohistochemistry (IHC). ResultsAfter Feiyanning intervention, compared to the blank group, Feiyanning inhibited the proliferation of A549 and H1299 cells in a concentration-dependent manner (P<0.01). The metastasis ability of Feiyanning-treated cells was significantly decreased compared to the blank group (P<0.01). The expression of EMT marker proteins N-cadherin and zinc finger transcription factors (Zeb1, Snail, Slug) was significantly reduced in the Feiyanning groups compared to the blank group (P<0.05, P<0.01). The expression of p-Smad2/3, Smad2/3, TβRI, and TβRⅡ, key proteins in the TGF-β1/Smad signaling pathway, was also significantly decreased (P<0.01). In the TGF-β1-induced EMT model, compared to the TGF-β1 group, the cell metastasis ability in the Feiyanning groups was reduced (P<0.01), and the expression levels of N-cadherin, Zeb1, Snail, and Slug were significantly lower (P<0.01). The expression levels of p-Smad2/3, Smad2/3, TβRI, and TβRⅡ were also significantly reduced (P<0.01). In vivo results showed that compared to the model group, the number of lung metastases in the FYN1, FYN2, and SB431542 groups was reduced (P<0.01), and the range of cell infiltration was narrowed. Immunohistochemical results showed that compared to the model group, the expression of E-cadherin in the FYN1, FYN2, and SB431542 groups was increased (P<0.01), the expression of N-cadherin decreased (P<0.05, P<0.01), and the expression of p-Smad2 and p-Smad3, key proteins of the TGF-β1/Smad pathway, was reduced (P<0.01). ConclusionFeiyanning inhibits the invasion and metastasis of NSCLC cells and EMT. The mechanism is related to the inhibition of TGF-β1/Smad signaling pathway.
9.Feiyanning Inhibits Invasion and Metastasis of Non-small Cell Lung Cancer by Regulating EMT via TGF-β1/Smad Signaling Pathway
Xiaojie FU ; Jia YANG ; Kaile LIU ; Wenjie WANG ; Zhenye XU ; Zhongqi WANG ; Haibin DENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):110-120
ObjectiveTo explore the mechanism of the anti-cancer compound formula Feiyanning in inhibiting epithelial-mesenchymal transition (EMT) and invasion and metastasis of non-small cell lung cancer (NSCLC). MethodsCell proliferation and activity were assessed using the cell counting kit-8(CCK-8) assay to evaluate the effect of Feiyanning on the proliferation of A549 and H1299 cells. Wound healing and Transwell assays were conducted to examine Feiyanning's impact on the metastasis of A549 and H1299 cells. The effects of Feiyanning on EMT and the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway proteins in A549 and H1299 cells were detected by Western blot. Exogenous TGF-β1 was used to induce EMT in A549 and H1299 cells. The effects of Feiyanning on TGF-β1-induced NSCLC cell metastasis, EMT, and the TGF-β1/Smad pathway proteins were assessed by wound healing assay, Transwell assay, and Western blot. In vivo, an A549 lung metastasis model was established via tail vein injection in nude mice. A total of 28 SPF male nude mice were randomly divided into four groups: Model (NC) group, Feiyanning low-dose (FYN1) group, Feiyanning high-dose (FYN2) group, and the positive control group (TGF-β receptor kinase inhibitor SB431542 group). The corresponding interventions were performed. After 40 days, the mice were euthanized, and lung metastases were analyzed. The expression of E-cadherin, N-cadherin, p-Smad2, and p-Smad3 in each group was detected by immunohistochemistry (IHC). ResultsAfter Feiyanning intervention, compared to the blank group, Feiyanning inhibited the proliferation of A549 and H1299 cells in a concentration-dependent manner (P<0.01). The metastasis ability of Feiyanning-treated cells was significantly decreased compared to the blank group (P<0.01). The expression of EMT marker proteins N-cadherin and zinc finger transcription factors (Zeb1, Snail, Slug) was significantly reduced in the Feiyanning groups compared to the blank group (P<0.05, P<0.01). The expression of p-Smad2/3, Smad2/3, TβRI, and TβRⅡ, key proteins in the TGF-β1/Smad signaling pathway, was also significantly decreased (P<0.01). In the TGF-β1-induced EMT model, compared to the TGF-β1 group, the cell metastasis ability in the Feiyanning groups was reduced (P<0.01), and the expression levels of N-cadherin, Zeb1, Snail, and Slug were significantly lower (P<0.01). The expression levels of p-Smad2/3, Smad2/3, TβRI, and TβRⅡ were also significantly reduced (P<0.01). In vivo results showed that compared to the model group, the number of lung metastases in the FYN1, FYN2, and SB431542 groups was reduced (P<0.01), and the range of cell infiltration was narrowed. Immunohistochemical results showed that compared to the model group, the expression of E-cadherin in the FYN1, FYN2, and SB431542 groups was increased (P<0.01), the expression of N-cadherin decreased (P<0.05, P<0.01), and the expression of p-Smad2 and p-Smad3, key proteins of the TGF-β1/Smad pathway, was reduced (P<0.01). ConclusionFeiyanning inhibits the invasion and metastasis of NSCLC cells and EMT. The mechanism is related to the inhibition of TGF-β1/Smad signaling pathway.
10.Untargeted Metabolomics Analysis of Demyelination in the Brain of Balb/c Mice Infected by Angiostrongylus cantonensis
Zhen NIU ; Xiaojie WU ; Liang YANG ; Zhixuan MA ; Junxiong YANG ; Ying FENG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(2):293-300
ObjectiveTo investigate the demyelination induced by Angiostrongylus cantonensis (AC) infection in the brain of Balb/c mice and analyze the untargeted metabolomic changes in the corpus callosum, aiming to elucidate the underlying mechanisms. MethodsBalb/c mice were randomly assigned to a control group (n=6) and an infection group (n=6). The infection group was orally administered 30 third-stage larvae of AC, while the control group received an equal volume of saline. Body weight, visual function, and behavioral scores were measured on post-infection 3, 6, 9, 12, 15, 18, and 21 days to assess neurological alterations. After 21 days, brain tissues were harvested for immunofluorescence staining, hematoxylin-eosin (HE) staining, and transmission electron microscopy to examine morphological changes in brain myelin and retina. Metabolomics analysis was performed, and differential metabolites were identified using volcano plots and heatmaps. The distribution of fold changes and bar charts were used to profile the key metabolites. These differential metabolites were then subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and regulatory network analysis. ResultsOn the 9th day after AC infection, Balb/c mice showed a decline in neurological behavioral scores (P<0.05). By day 15, visual scores decreased (P<0.05), and by day 21, significant weight loss (P<0.001) and mortality were observed. Concurrently, transmission electron microscopy and immunofluorescence staining revealed significant myelin damage in the corpus callosum and a marked reduction in oligodendrocytes (P<0.001). HE staining showed severe retinal ganglion cell damage. Metabolomic analysis revealed that glycerophospholipids were the most abundant differential metabolites, with steroids and sphingolipids being relatively less abundant. Cholesteryl ester CE (20:2) was significantly upregulated (P<0.001), while phosphatidylmethanol (18:0_18:1) was significantly downregulated (P<0.01). KEGG enrichment and regulatory network analyses demonstrated that the differential metabolites were mainly enriched in metabolic pathways like steroid biosynthesis, bile secretion, and cholesterol metabolism, and were involved in key metabolic pathways such as sphingolipid metabolism, neural signal regulation, and glycerophospholipid metabolism. ConclusionsAC infection affects the metabolic state of mice via multiple pathways, modifying the levels of metabolites crucial for myelination and myelin stability. Demyelination may be closely linked to the disruption of these key metabolic pathways, particularly the dysregulation of cholesterol and sphingolipid metabolism, potentially playing a central role in demyelination onset. Furthermore, alterations in phospholipid metabolism and abnormal nerve signaling regulation may exacerbate myelin damage.

Result Analysis
Print
Save
E-mail