1.Expression of NFAT5 and IGF1R in nasopharyngeal carcinoma tissues and analysis of clinical characteristics.
Jie YANG ; Qing WANG ; Fusheng LIN ; Lin GAO ; Ran ZHANG ; Xingqian ZHAO ; Xiaojiang LI
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(4):333-343
Objective:To investigate the expression of NFAT5 and IGF1R in nasopharyngeal carcinoma tissues and analyze their expression levels in relation to clinical features and prognosis. Methods:From January 1, 2019, to December 31, 2019, 69 cases of nasopharyngeal carcinoma tissues and adjacent non-cancerous tissues were collected from patients treated at Yunnan Cancer Hospital. Immunohistochemistry was employed to detect the expression of NFAT5 and IGF1R in nasopharyngeal carcinoma tissues. The Kaplan-Meier method was used to predict survival time, and the clinicopathological features were evaluated using the log-Rank test. Results:The positive expression rates of NFAT5 and IGF1R in nasopharyngeal carcinoma tissues were 87.0% and 84.5%, respectively. Compared to adjacent normal tissues, the expression levels of NFAT5 and IGF1R in nasopharyngeal carcinoma tissues were significantly increased (P<0.05). Furthermore, the expression of NFAT5 and IGF1R was positively correlated with T stage, N stage, skull base invasion, and cranial nerve palsy (P<0.05). The overexpression of NFAT5 and IGF1R significantly affected the survival rate of patients with nasopharyngeal carcinoma and was negatively correlated with prognosis (P<0.05). Conclusion:In nasopharyngeal carcinoma tissues, overexpression of NFAT5 and IGF1R is observed, which is closely linked to clinical features and patient outcomes. These markers may serve as valuable indicators for predicting the prognosis of nasopharyngeal carcinoma.
Humans
;
Nasopharyngeal Carcinoma/pathology*
;
Nasopharyngeal Neoplasms/metabolism*
;
Prognosis
;
Female
;
Receptor, IGF Type 1/metabolism*
;
Male
;
Transcription Factors/metabolism*
;
Middle Aged
;
Survival Rate
;
Adult
;
Neoplasm Staging
2.Clinical characteristics and prognosis analysis of 108 cases of recurrent nasopharyngeal carcinoma from a single center.
Qing WANG ; Fusheng LIN ; Ran ZHANG ; Lin GAO ; Xingqian ZHAO ; Jie YANG ; Xiaojiang LI
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(8):743-748
Objective:Retrospective analysis of the correlation between clinicopathologic features and related indexes and prognosis in patients with recurrent nasopharyngeal carcinoma. Methods:One hundred and eight nasopharyngeal cancer(NPC) patients with post-treatment recurrence in Yunnan Cancer Hospital from January 2013 to January 2018 were collected, and the survival time was estimated by Kaplan-Meier method, and clinicopathological characteristics were analyzed by log-rank test; risk factors and prognosis were analyzed by Cox proportional risk model for single-factor and multifactorial analysis. A P-value <0.05 was considered statistically significant. Results:The median survival of all patients was 54 months, with a 3-year survival rate of 80.2% and a 5-year survival rate of 39.8%. The 5-year overall survival rate was 50.2% for patients >46 years old and 27.9% for patients ≤46 years old(P<0.05), a statistically significant difference. Univariate analysis showed that overall survival was associated with age, chemotherapy regimen, EBV early antigen IgA, plasma D-dimer, glycan antigen-125, γ-interferon, α-tumor necrosis factor, IL-10, and IL-4(P<0.05). Multifactorial analysis revealed that age, chemotherapy regimen, EBV early antigen IgA, plasma D-dimer, glycan antigen-125, and interleukin 10 were independent influences on the prognosis of recurrent nasopharyngeal carcinoma(P<0.05). Conclusion:Differences in chemotherapy regimens affect the prognosis of recurrent nasopharyngeal carcinoma. Elevated plasma D-dimer, glycan antigen 125, and interleukin 10 levels affect the overall survival of recurrent nasopharyngeal carcinoma, which may be a valid independent prognostic factor, and are expected to provide new biomarkers for nasopharyngeal carcinoma in the clinic.
Humans
;
Prognosis
;
Nasopharyngeal Neoplasms/mortality*
;
Nasopharyngeal Carcinoma
;
Retrospective Studies
;
Neoplasm Recurrence, Local
;
Male
;
Middle Aged
;
Female
;
Survival Rate
;
Adult
;
Risk Factors
;
Interleukin-10/blood*
;
Aged
;
Proportional Hazards Models
3.Withanolide derivatives from Physalis angulata var. villosa and their cytotoxic activities.
Peng WANG ; Jue YANG ; Yu ZHANG ; Jun JIN ; Meijun CHEN ; Xiaojiang HAO ; Chunmao YUAN ; Ping YI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):762-768
A comprehensive phytochemical investigation of the leaves and twigs of Physalis angulata. var. villosa resulted in the isolation of 23 withanolide derivatives, including one novel 13,20-γ-lactone withanolide derivative (1) and three new withanolide derivatives (2-4). Architecturally, physalinin A (1) represents the first identified type B withanolide featuring a 13,20-γ-lactone moiety. The molecular structures of all isolates were elucidated using an integrated approach combining nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared (IR) spectroscopy, and quantum chemical calculations to confirm structural assignments. The antiproliferative activities of all isolated withanolides were evaluated against four human cancer cell lines (HEL, HCT-116, Colo320DM, and MDA-MB-231). Among them, eight derivatives (2, 5-8, 14, 15, and 23) exhibited significant inhibitory effects, with half-maximal inhibitory concentration (IC50) values of 0.18 ± 0.03 to 17.02 ± 0.21 μmol·L-1. Structure-activity relationship (SAR) analysis suggested that the presence of an epoxide ring enhances anticancer activity, potentially through increased reactivity or specific interactions with molecular targets involved in cancer progression. These findings underscore the pharmacological potential of withanolides as promising lead compounds for the development of novel anticancer therapeutics.
Withanolides/isolation & purification*
;
Physalis/chemistry*
;
Humans
;
Molecular Structure
;
Cell Line, Tumor
;
Antineoplastic Agents, Phytogenic/isolation & purification*
;
Cell Proliferation/drug effects*
;
Plant Leaves/chemistry*
;
Plant Extracts/pharmacology*
4.Single-cell RNA sequencing reveals the process of CA19-9 production and dynamics of the immune microenvironment between CA19-9 (+) and CA19-9 (-) PDAC
Deyu ZHANG ; Fang CUI ; Kailian ZHENG ; Wanshun LI ; Yue LIU ; Chang WU ; Lisi PENG ; Zhenghui YANG ; Qianqian CHEN ; Chuanchao XIA ; Shiyu LI ; Zhendong JIN ; Xiaojiang XU ; Gang JIN ; Zhaoshen LI ; Haojie HUANG
Chinese Medical Journal 2024;137(20):2415-2428
Background::Pancreatic ductal adenocarcinoma (PDAC) is one of the main types of malignant tumor of the digestive system, and patient prognosis is affected by difficulties in early diagnosis, poor treatment response, and a high postoperative recurrence rate. Carbohydrate antigen 19-9 (CA19-9) has been widely used as a biomarker for the diagnosis and postoperative follow-up of PDAC patients. Nevertheless, the production mechanism and potential role of CA19-9 in PDAC progression have not yet been elucidated.Methods::We performed single-cell RNA sequencing on six samples pathologically diagnosed as PDAC (three CA19-9-positive and three CA19-9-negative PDAC samples) and two paracarcinoma samples. We also downloaded and integrated PDAC samples (each from three CA19-9-positive and CA19-9-negative patients) from an online database. The dynamics of the proportion and potential function of each cell type were verified through immunofluorescence. Moreover, we built an in vitro coculture cellular model to confirm the potential function of CA19-9. Results::Three subtypes of cancer cells with a high ability to produce CA19-9 were identified by the markers TOP2A, AQP5, and MUC5AC. CA19-9 production bypass was discovered on antigen-presenting cancer-associated fibroblasts (apCAFs). Importantly, the proportion of immature ficolin-1 positive (FCN1+) macrophages was high in the CA19-9-negative group, and the proportion of mature M2-like macrophages was high in the CA19-9-positive group. High proportions of these two macrophage subtypes were associated with an unfavourable clinical prognosis. Further experiments indicated that CA19-9 could facilitate the transformation of M0 macrophages into M2 macrophages in the tumor microenvironment. Conclusions::Our study described CA19-9 production at single-cell resolution and the dynamics of the immune atlas in CA19-9-positive and CA19-9-negative PDAC. CA19-9 could promote M2 polarization of macrophage in the pancreatic tumor microenvironment.
5.Surveillance of parasitic infections in market-sold aquatic products and knowledge and practice towards food-borne parasitic diseases among residents in Shanghai Municipality from 2020 to 2023
Simin DAI ; Qing YU ; Zhenyu WANG ; Yaoguang ZHANG ; Jiawei YANG ; Zixin WEI ; Xiaojiang MA ; Qian ZHU ; Jian CHEN ; Hao PAN ; Huanyu WU
Chinese Journal of Schistosomiasis Control 2024;36(6):631-636
Objective To investigate the prevalence of parasitic infections in market-sold aquatic products in Shanghai Municipality, and to understand the knowledge and practice towards food-borne parasitic diseases among residents, so as to provide insights into the surveillance and control of food-borne parasitic diseases. Methods Freshwater products, seawater products and pickled products were randomly obtained from agricultural trade markets, supermarkets, retail stores and restaurants in Huangpu, Putuo, Minhang and Qingpu districts of Shanghai Municipality from 2020 to 2023. Parasite metacercariae and larvae were detected in these aquatic products using pressing method, digestion method and the dissection method, and the detection of parasitic infection was compared in different types of aquatic products. In addition, the knowledge and practice towards food-borne parasitic diseases were investigated among residents aged 10-80 years old who randomly selected from agricultural trade markets, supermarkets, community streets and other population concentration areas in these four districts by questionnaire in 2023, and the awareness of food-borne parasitic diseases knowledge and percentage of healthy behaviors formation were analyzed. Results A total of 2 109 aquatic products sampled from Huangpu, Putuo, Minhang and Qingpu districts of Shanghai Municipality from 2020 to 2023 were detected, and there were 317 products detected with parasitic infections, with an overall detection rate of 15.03%. There were 8 products detected with parasitic infections in 1 221 freshwater products, with a detection rate of 0.66%, and Clonorchis sinensis was the predominant parasite, which was detected in Pseudorasbora parva, Rhodeus amarus and Carassius auratus. There were 82 products detected with parasitic infections in 501 seawater products, with a detection rate of 16.37%, and Anisakis was the predominant parasite, which was detected in Trichiurus lepturus, Larimichthys polyactis, Pneumatophorus japonicus, Collchthys lucidus, Mugil cephalus, Larimichthys crocea, Scomberomorus niphonius, Stromateoides argenteus and Cololabis saira. There were 227 products detected with parasitic infections in 387 pickled products, with a detection rate of 58.66%, and the prevalence rates of Echinostoma metacercariae were 76.27% (225/295) in Bullacta exarata and 11.11% (2/18) in crab pastes, respectively (χ2 = 159.511, P < 0.05). No Paragonimus infection was found in freshwater shrimps, crabs and pickled products, and no Diphyllobothrium latum larvae infection was detected in freshwater and seawater fish. Questionnaire surveys showed that the awareness of food-borne parasitic diseases knowledge was 79.00% (222/281), and the percentages of washing hands before and after meals, not drinking filtered water or tap water directly, not eating raw or semi-raw food, being willing to change special dietary preferences or bad living habits for health, and being willing to learn more about food-borne parasitic diseases knowledge were 99.64% (280/281), 72.24% (203/281), 56.23% (158/281), 96.80% (272/281) and 97.51% (274/281) among residents living in Huangpu, Putuo, Minhang and Qingpu districts, respectively. Conclusions There are food-borne parasite contaminations in market-sold aquatic products in Shanghai Municipality. Although residents are aware of food-borne parasitic diseases knowledge, sustainable surveillance of food-borne parasitic diseases and improved health education are required to minimize the risk of human parasitic infections.
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail