1.Octanoic acid-rich diet alleviates breast cancerinduced bone pain via the acyl-ghrelin/NPY pathway
Longjie XU ; Lili HOU ; Chun CAO ; Xiaohua LI
The Korean Journal of Pain 2025;38(2):138-151
Background:
Breast cancer is a common malignant tumor that has a high tendency to metastasis to the bone, leading to cancer-induced bone pain (CIBP). Ghrelin can not only stimulate appetite and regulate energy balance, but also alleviate CIBP by inducing NPY expression. Octanoic acid (OA), a type of medium chain fatty acids, provides an energy substrate and promotes acylation of ghrelin. However, it remains to be elucidated whether an OA-rich diet can alleviate CIBP by activating the acyl-ghrelin/NPY pathway.
Methods:
First, thirty-six Sprague–Dawley rats were randomly divided into the sham, CIBP, CIBP + OA (20), CIBP + OA (40), CIBP + OA (60) and CIBP + OA (80) groups to investigate the effects of diets with different ratios of OA on CIBP and the acyl-ghrelin/NPY pathway. Next, a ghrelin O-acyltransferase (GOAT) inhibitor was exogenously administered to investigate whether an OA-rich diet alleviated CIBP through increasing the level of acyl-ghrelin and activating the acyl-ghrelin/NPY pathway.
Results:
An OA-rich diet significantly alleviated nociceptive behaviors and increased the levels of acyl-ghrelin and NPY in a dose-dependent manner in cancer-bearing rats. With the exogenous administration of the GOAT inhibitor, the beneficial effects of an OA-rich diet on the acyl-ghrelin/NPY pathway and its pain-relieving effects were attenuated.
Conclusions
An OA-rich diet could alleviate CIBP through increasing the level of acyl-ghrelin and activating the acylghrelin/NPY pathway.
2.Octanoic acid-rich diet alleviates breast cancerinduced bone pain via the acyl-ghrelin/NPY pathway
Longjie XU ; Lili HOU ; Chun CAO ; Xiaohua LI
The Korean Journal of Pain 2025;38(2):138-151
Background:
Breast cancer is a common malignant tumor that has a high tendency to metastasis to the bone, leading to cancer-induced bone pain (CIBP). Ghrelin can not only stimulate appetite and regulate energy balance, but also alleviate CIBP by inducing NPY expression. Octanoic acid (OA), a type of medium chain fatty acids, provides an energy substrate and promotes acylation of ghrelin. However, it remains to be elucidated whether an OA-rich diet can alleviate CIBP by activating the acyl-ghrelin/NPY pathway.
Methods:
First, thirty-six Sprague–Dawley rats were randomly divided into the sham, CIBP, CIBP + OA (20), CIBP + OA (40), CIBP + OA (60) and CIBP + OA (80) groups to investigate the effects of diets with different ratios of OA on CIBP and the acyl-ghrelin/NPY pathway. Next, a ghrelin O-acyltransferase (GOAT) inhibitor was exogenously administered to investigate whether an OA-rich diet alleviated CIBP through increasing the level of acyl-ghrelin and activating the acyl-ghrelin/NPY pathway.
Results:
An OA-rich diet significantly alleviated nociceptive behaviors and increased the levels of acyl-ghrelin and NPY in a dose-dependent manner in cancer-bearing rats. With the exogenous administration of the GOAT inhibitor, the beneficial effects of an OA-rich diet on the acyl-ghrelin/NPY pathway and its pain-relieving effects were attenuated.
Conclusions
An OA-rich diet could alleviate CIBP through increasing the level of acyl-ghrelin and activating the acylghrelin/NPY pathway.
3.Octanoic acid-rich diet alleviates breast cancerinduced bone pain via the acyl-ghrelin/NPY pathway
Longjie XU ; Lili HOU ; Chun CAO ; Xiaohua LI
The Korean Journal of Pain 2025;38(2):138-151
Background:
Breast cancer is a common malignant tumor that has a high tendency to metastasis to the bone, leading to cancer-induced bone pain (CIBP). Ghrelin can not only stimulate appetite and regulate energy balance, but also alleviate CIBP by inducing NPY expression. Octanoic acid (OA), a type of medium chain fatty acids, provides an energy substrate and promotes acylation of ghrelin. However, it remains to be elucidated whether an OA-rich diet can alleviate CIBP by activating the acyl-ghrelin/NPY pathway.
Methods:
First, thirty-six Sprague–Dawley rats were randomly divided into the sham, CIBP, CIBP + OA (20), CIBP + OA (40), CIBP + OA (60) and CIBP + OA (80) groups to investigate the effects of diets with different ratios of OA on CIBP and the acyl-ghrelin/NPY pathway. Next, a ghrelin O-acyltransferase (GOAT) inhibitor was exogenously administered to investigate whether an OA-rich diet alleviated CIBP through increasing the level of acyl-ghrelin and activating the acyl-ghrelin/NPY pathway.
Results:
An OA-rich diet significantly alleviated nociceptive behaviors and increased the levels of acyl-ghrelin and NPY in a dose-dependent manner in cancer-bearing rats. With the exogenous administration of the GOAT inhibitor, the beneficial effects of an OA-rich diet on the acyl-ghrelin/NPY pathway and its pain-relieving effects were attenuated.
Conclusions
An OA-rich diet could alleviate CIBP through increasing the level of acyl-ghrelin and activating the acylghrelin/NPY pathway.
4.Octanoic acid-rich diet alleviates breast cancerinduced bone pain via the acyl-ghrelin/NPY pathway
Longjie XU ; Lili HOU ; Chun CAO ; Xiaohua LI
The Korean Journal of Pain 2025;38(2):138-151
Background:
Breast cancer is a common malignant tumor that has a high tendency to metastasis to the bone, leading to cancer-induced bone pain (CIBP). Ghrelin can not only stimulate appetite and regulate energy balance, but also alleviate CIBP by inducing NPY expression. Octanoic acid (OA), a type of medium chain fatty acids, provides an energy substrate and promotes acylation of ghrelin. However, it remains to be elucidated whether an OA-rich diet can alleviate CIBP by activating the acyl-ghrelin/NPY pathway.
Methods:
First, thirty-six Sprague–Dawley rats were randomly divided into the sham, CIBP, CIBP + OA (20), CIBP + OA (40), CIBP + OA (60) and CIBP + OA (80) groups to investigate the effects of diets with different ratios of OA on CIBP and the acyl-ghrelin/NPY pathway. Next, a ghrelin O-acyltransferase (GOAT) inhibitor was exogenously administered to investigate whether an OA-rich diet alleviated CIBP through increasing the level of acyl-ghrelin and activating the acyl-ghrelin/NPY pathway.
Results:
An OA-rich diet significantly alleviated nociceptive behaviors and increased the levels of acyl-ghrelin and NPY in a dose-dependent manner in cancer-bearing rats. With the exogenous administration of the GOAT inhibitor, the beneficial effects of an OA-rich diet on the acyl-ghrelin/NPY pathway and its pain-relieving effects were attenuated.
Conclusions
An OA-rich diet could alleviate CIBP through increasing the level of acyl-ghrelin and activating the acylghrelin/NPY pathway.
5.Octanoic acid-rich diet alleviates breast cancerinduced bone pain via the acyl-ghrelin/NPY pathway
Longjie XU ; Lili HOU ; Chun CAO ; Xiaohua LI
The Korean Journal of Pain 2025;38(2):138-151
Background:
Breast cancer is a common malignant tumor that has a high tendency to metastasis to the bone, leading to cancer-induced bone pain (CIBP). Ghrelin can not only stimulate appetite and regulate energy balance, but also alleviate CIBP by inducing NPY expression. Octanoic acid (OA), a type of medium chain fatty acids, provides an energy substrate and promotes acylation of ghrelin. However, it remains to be elucidated whether an OA-rich diet can alleviate CIBP by activating the acyl-ghrelin/NPY pathway.
Methods:
First, thirty-six Sprague–Dawley rats were randomly divided into the sham, CIBP, CIBP + OA (20), CIBP + OA (40), CIBP + OA (60) and CIBP + OA (80) groups to investigate the effects of diets with different ratios of OA on CIBP and the acyl-ghrelin/NPY pathway. Next, a ghrelin O-acyltransferase (GOAT) inhibitor was exogenously administered to investigate whether an OA-rich diet alleviated CIBP through increasing the level of acyl-ghrelin and activating the acyl-ghrelin/NPY pathway.
Results:
An OA-rich diet significantly alleviated nociceptive behaviors and increased the levels of acyl-ghrelin and NPY in a dose-dependent manner in cancer-bearing rats. With the exogenous administration of the GOAT inhibitor, the beneficial effects of an OA-rich diet on the acyl-ghrelin/NPY pathway and its pain-relieving effects were attenuated.
Conclusions
An OA-rich diet could alleviate CIBP through increasing the level of acyl-ghrelin and activating the acylghrelin/NPY pathway.
6.Herb-spreading moxibustion as an adjuvant treatment for chemotherapy-induced nausea and vomiting of spleen and stomach deficiency cold in gastric cancer: a randomized controlled trial.
Zhongting ZHAO ; Xiaohua WANG ; Jie CAO ; Fan FAN
Chinese Acupuncture & Moxibustion 2025;45(12):1723-1729
OBJECTIVE:
To observe the clinical efficacy of herb-spreading moxibustion as an adjuvant treatment for chemotherapy-induced nausea and vomiting (CINV) of spleen and stomach deficiency cold in gastric cancer.
METHODS:
Seventy-six patients with CINV of spleen and stomach deficiency cold in gastric cancer were randomly divided into an observation group (38 cases, 1 case was discontinued, 1 case dropped out) and a control group (38 cases, 1 case was discontinued). The patients in both groups were treated with cisplatin+tigio regimen chemotherapy, and were treated with basic anti-nausea drugs on the 1st to 3rd day of chemotherapy. The observation group was treated with herb-spreading moxibustion at Zhongwan (CV12) acupoint area (covering from Shangwan [CV13] to Shenque [CV8] of the conception vessel, and from both sides to the kidney meridian of foot-shaoyin). The herb was selected as Fuzi Lizhong decoction, once a day, about 50 min each time, with 3 consecutive days as one treatment course, with an interval of 1 day between each course, for a total of 3 treatment courses. The grading of nausea and vomiting degree in the two groups were recorded on the 1st, 3rd, 7th and 14th days of chemotherapy. Karnofsky performance status (KPS) score in the two groups was observed before treatment and on the 1st, 3rd, 7th and 14th days of chemotherapy. The TCM symptom grading and TCM syndrome score of the two groups before and after treatment were compared, and the clinical efficacy and safety of the two groups were evaluated.
RESULTS:
On the 7th and 14th days of chemotherapy, the grading of nausea degree in the observation group was lower than that in the control group (P<0.05). On the 3rd, 7th and 14th days of chemotherapy, the grading of vomiting degree in the observation group was lower than that in the control group (P<0.05, P<0.01). Compared before treatment, the KPS scores of the two groups on the 1st day of chemotherapy and the control group on the 7th day of chemotherapy were decreased (P<0.05, P<0.01), and the KPS scores of the observation group on the 7th day of chemotherapy and the two groups on the 14th day of chemotherapy were increased (P<0.01). On the 7th and 14th days of chemotherapy, the KPS scores of the observation group were higher than those of the control group (P<0.01). After treatment, the each item grading of TCM symptom in the two groups was better than that before treatment (P<0.01), except for loose stool, the each item grading of TCM symptom in the observation group was better than that in the control group (P<0.05, P<0.01). After treatment, the scores of TCM syndrome in the two groups were lower than those before treatment (P<0.01), and the score in the observation group was lower than that in the control group (P<0.01). The obvious effective rate of the observation group was 58.3% (21/36), which was higher than 24.3% (9/37) of the control group (P<0.01). No adverse events occurred in both groups.
CONCLUSION
Herb-spreading moxibustion as an adjuvant treatment for CINV of spleen and stomach deficiency cold in gastric cancer can effectively relieve nausea and vomiting, and improve the symptoms of TCM, and improve the quality of life of patients. The clinical efficacy is satisfactory and the safety is good.
Humans
;
Moxibustion
;
Male
;
Female
;
Middle Aged
;
Stomach Neoplasms/drug therapy*
;
Nausea/physiopathology*
;
Vomiting/physiopathology*
;
Aged
;
Adult
;
Acupuncture Points
;
Antineoplastic Agents/therapeutic use*
;
Drugs, Chinese Herbal/administration & dosage*
;
Spleen/drug effects*
;
Stomach/drug effects*
7.Analysis of five Chinese individuals with rare thalassemia mutation HBB: c. 93-21G>A
Guangkuan ZENG ; Yiyuan GE ; Xiaomin MA ; Xiaohua YU ; Bairu LAI ; Yuwei LIAO ; Lili LIU ; Yanbin CAO ; Yanqing ZENG ; Yuchan HUANG ; Jianlian LIANG ; Liye YANG
Chinese Journal of Medical Genetics 2024;41(10):1171-1175
Objective:To explore the hematological phenotype and genotypic characteristics of five Chinese individuals with a rare thalassemia mutation HBB: c. 93-21G>A. Methods:A retrospective study was carried out on five individuals identified by the People′s Hospital of Yangjiang and Guangzhou Hybribio Co., Ltd. from May 2018 to September 2022. Routine blood test and hemoglobin electrophoresis were performed, and the genotypes of five subjects were determined by using PCR combined with reverse dot blotting (RDB), nested PCR, Gap-PCR and Sanger sequencing. This study was approved by Medical Ethics Cornmittee of the People′s Hospital of Yangjiang (Ethics No. 20240001).Results:Among the five individuals, hematological data of one was unavailable, and the remaining four had presented with microcytosis and hypochromia. The results of hemoglobin electrophoresis indicated that all of them had a HbA 2 level of ≥4.7%. Genetic analysis showed that one case had harbored compound heterozygous mutations of ααα anti3.7 triplet and HBB: c. 93-21G>A, one had compound heterozygous mutations of -α 3.7 and HBB: c. 93-21G>A, whilst the remaining three were heterozygous for the HBB: c. 93-21G>A mutation. Conclusion:The hematological phenotype of β-thalassemia carriers ( HBB: c. 93-21G>A) is similar to that of other β + thalassemia heterozygotes with mild β-thalassemia characteristics.
8.The mechanism of NRF2 inhibiting ROS induced autophagy to reduce ovarian granulosa cells damage
Xiaohua ZHOU ; Ying LIANG ; Shuguang HE ; Shiyun TIAN ; Hui LONG ; Yi CAO ; Wei XIONG
Chinese Journal of Preventive Medicine 2024;58(2):261-267
This study explores the effects and possible mechanisms of nuclear factor E2 related factor 2 (NRF2) on ovarian granulosa cells, providing a scientific basis to prevent premature ovarian failure. An ovarian cell injury model was constructed by treating human ovarian granulosa cell (KGN cell) with 4-Vinylcyclohexene dioxide (VCD). Firstly, KGN cells were treated with different concentrations of VCD, and cell counting kit 8 (CCK-8) was used to detect ovarian cell proliferation. After determining IC 50 by CCK8, the levels of estradiol and progesterone in the cell supernatant were detected using enzyme-linked immunosorbent assay (ELISA), reactive oxygen species (ROS) assay kit was used to detect the content of ROS in ovarian cells, real-time fluorescence quantitative polymerase chain reaction (qRT PCR) was used to detect the mRNA expression level of NRF2, and Western blot was used to detect the protein expression level of NRF2. Further, NRF2 silence (siNRF2) and overexpression (NRF2-OE) cell models were constructed through lentivirus transfection, and the effects of regulating NRF2 on VCD treated cell models were investigated by detecting hormone levels, oxidative stress indicators (ROS, SOD, GSH-Px), and autophagy (LC3B level). The results showed that VCD intervention inhibited the proliferation of ovarian granulosa cells in a time-dependent and dose-dependent manner ( F>100, P<0.05), with an IC 50 of 1.2 mmol/L at 24 hours. After VCD treatment, the level of estradiol in the cell supernatant decreased from (56.32±10.18) ng/ml to (24.59±8.75) ng/ml ( t=5.78, P<0.05). Progesterone decreased from (50.25±7.03) ng/ml to (25.13±6.67) ng/ml ( t=6.54, P<0.05). After VCD treatment, the SOD of cells decreased from (44.47±7.71) ng/ml to (30.92±4.97) ng/ml ( t=3.61, P<0.05). GSH-Px decreased from (68.51±10.17) ng/ml to (35.19±6.59) ng/ml ( t=5.73, P<0.05). Simultaneously accompanied by an increase in autophagy and a decrease in NRF2. This study successfully constructed KGN cell models that silenced NRF2 and overexpressed NRF2. Subsequently, this study treated each group of cells with VCD and found that the cell proliferation activity of the siNRF2 group was significantly reduced ( t=8.37, P<0.05), while NRF2-OE could reverse the cell activity damage caused by VCD ( t=3.37, P<0.05). The siNRF2 group had the lowest level of estradiol ( t=5.78, P<0.05), while NRF2-OE could reverse the decrease in cellular estradiol levels caused by VCD ( t=5.58, P<0.05). The siNRF2 group had the lowest progesterone levels ( t=3.02, P<0.05), while NRF2-OE could reverse the decrease in cellular progesterone levels caused by VCD ( t=2.41, P<0.05). The ROS level in the siNRF2 group was the highest ( t=2.86, P<0.05), NRF2-OE could reverse the increase in ROS caused by VCD ( t=3.14, P<0.05), the SOD enzyme content in the siNRF2 group was the lowest ( t=2.98, P<0.05), and NRF2-OE could reverse the decrease in SOD enzyme content caused by VCD ( t=4.72, P<0.05). The GSH-Px enzyme content in the siNRF2 group was the lowest ( t=3.67, P<0.05), and NRF2-OE could reverse the decrease in antioxidant enzyme content caused by VCD ( t=2.71, P<0.05). The LC3B level was highest in the siNRF2 group ( t=2.45, P<0.05), and NRF2-OE was able to reverse the LC3B elevation caused by VCD ( t=9.64, P<0.05). In conclusion, NRF2 inhibits ROS induced autophagy, thereby playing a role in reducing ovarian granulosa cell damage, which may be a potential target for premature ovarian failure.
9.The mechanism of NRF2 inhibiting ROS induced autophagy to reduce ovarian granulosa cells damage
Xiaohua ZHOU ; Ying LIANG ; Shuguang HE ; Shiyun TIAN ; Hui LONG ; Yi CAO ; Wei XIONG
Chinese Journal of Preventive Medicine 2024;58(2):261-267
This study explores the effects and possible mechanisms of nuclear factor E2 related factor 2 (NRF2) on ovarian granulosa cells, providing a scientific basis to prevent premature ovarian failure. An ovarian cell injury model was constructed by treating human ovarian granulosa cell (KGN cell) with 4-Vinylcyclohexene dioxide (VCD). Firstly, KGN cells were treated with different concentrations of VCD, and cell counting kit 8 (CCK-8) was used to detect ovarian cell proliferation. After determining IC 50 by CCK8, the levels of estradiol and progesterone in the cell supernatant were detected using enzyme-linked immunosorbent assay (ELISA), reactive oxygen species (ROS) assay kit was used to detect the content of ROS in ovarian cells, real-time fluorescence quantitative polymerase chain reaction (qRT PCR) was used to detect the mRNA expression level of NRF2, and Western blot was used to detect the protein expression level of NRF2. Further, NRF2 silence (siNRF2) and overexpression (NRF2-OE) cell models were constructed through lentivirus transfection, and the effects of regulating NRF2 on VCD treated cell models were investigated by detecting hormone levels, oxidative stress indicators (ROS, SOD, GSH-Px), and autophagy (LC3B level). The results showed that VCD intervention inhibited the proliferation of ovarian granulosa cells in a time-dependent and dose-dependent manner ( F>100, P<0.05), with an IC 50 of 1.2 mmol/L at 24 hours. After VCD treatment, the level of estradiol in the cell supernatant decreased from (56.32±10.18) ng/ml to (24.59±8.75) ng/ml ( t=5.78, P<0.05). Progesterone decreased from (50.25±7.03) ng/ml to (25.13±6.67) ng/ml ( t=6.54, P<0.05). After VCD treatment, the SOD of cells decreased from (44.47±7.71) ng/ml to (30.92±4.97) ng/ml ( t=3.61, P<0.05). GSH-Px decreased from (68.51±10.17) ng/ml to (35.19±6.59) ng/ml ( t=5.73, P<0.05). Simultaneously accompanied by an increase in autophagy and a decrease in NRF2. This study successfully constructed KGN cell models that silenced NRF2 and overexpressed NRF2. Subsequently, this study treated each group of cells with VCD and found that the cell proliferation activity of the siNRF2 group was significantly reduced ( t=8.37, P<0.05), while NRF2-OE could reverse the cell activity damage caused by VCD ( t=3.37, P<0.05). The siNRF2 group had the lowest level of estradiol ( t=5.78, P<0.05), while NRF2-OE could reverse the decrease in cellular estradiol levels caused by VCD ( t=5.58, P<0.05). The siNRF2 group had the lowest progesterone levels ( t=3.02, P<0.05), while NRF2-OE could reverse the decrease in cellular progesterone levels caused by VCD ( t=2.41, P<0.05). The ROS level in the siNRF2 group was the highest ( t=2.86, P<0.05), NRF2-OE could reverse the increase in ROS caused by VCD ( t=3.14, P<0.05), the SOD enzyme content in the siNRF2 group was the lowest ( t=2.98, P<0.05), and NRF2-OE could reverse the decrease in SOD enzyme content caused by VCD ( t=4.72, P<0.05). The GSH-Px enzyme content in the siNRF2 group was the lowest ( t=3.67, P<0.05), and NRF2-OE could reverse the decrease in antioxidant enzyme content caused by VCD ( t=2.71, P<0.05). The LC3B level was highest in the siNRF2 group ( t=2.45, P<0.05), and NRF2-OE was able to reverse the LC3B elevation caused by VCD ( t=9.64, P<0.05). In conclusion, NRF2 inhibits ROS induced autophagy, thereby playing a role in reducing ovarian granulosa cell damage, which may be a potential target for premature ovarian failure.
10.Protective effects of nicotinamide mononucleotide on ethanol-induced DNA damage in L02 cells
DI Chunhong ; YIN Jie ; ZHONG Wenying ; ZHANG Yingying ; CAO Yuejia ; TAN Xiaohua
Journal of Preventive Medicine 2024;36(6):548-552
Objective:
To investigate protective effects of nicotinamide mononucleotide (NMN) on ethanol-induced DNA damage in L02 cells, so as to provide the evidence for adjuvant therapy of NMN on alcoholic liver diseases.
Methods:
L02 cells were pretreated with different concentrations of NMN (0, 1, 2, 4 and 8 mmol/L) for 6 h, and then were exposed to 0.4% ethanol for 12 h. The treated cells were divided into the control group, 0.4% ethanol group and different concentrations of NMN groups. Cell viability was analyzed using trypan blue staining for determining the concentration of NMN as a protective agent. The effects of NMN on ethanol-induced DNA damage in L02 cells were evaluated using immunofluorescence detection and reactive oxygen species (ROS) assay. L02 cells were exposed to 0.4% ethanol for 12 h, cultured in a medium containing a protective concentration of NMN, and divided into PBS group and NMN group. Cell viability was detected at 0, 2, 4, 8, 16 and 32 h, and the effects of NMN on repairing ethanol-induced DNA damage were evaluated by alkaline comet assay.
Results:
The cell viability was lower in 0.4% ethanol group than than in the control group, and was higher in different concentrations of NMN groups than in 0.4% ethanol group (all P<0.05), with no significant difference in the cells viability between 4 mmol/L and higher concentrations of NMN groups and the control group (all P>0.05). Therefore, 4 mmol/L NMN was selected as a protective agent. The cell tail moments, relative immunofluorescence intensities of γH2AX and relative levels of ROS were higher in 0.4% ethanol group than in the control group, and lower in 4 mmol/L and higher concentrations of NMN groups than in 0.4% ethanol group (all P<0.05). The cell viability was increased and the cell tail moment was shortened with the increase of 4 mmol/L NMN intervention time; and the cell viability in 4 h and more of NMN groups were higher, and the cell tail moment were lower than that in PBS group (all P<0.05).
Conclusions
NMN attenuates DNA damage in a dose-dependent manner and promotes the repair of DNA damage in a time-dependent manner. NMN has a protective effect on ethanol-induced DNA damage in hepatocytes.


Result Analysis
Print
Save
E-mail