1.Pathogenesis and Treatment of Atopic Dermatitis from the Theory of Pathogens Intruding Eight Weak Areas
Zhengwen TENG ; Nan LI ; Sai ZHANG ; Xiaohan HANG ; Fengchuan ZHANG ; Yuanwen LI
Journal of Traditional Chinese Medicine 2025;66(15):1548-1552
Based on the discussion of "eight weak areas" in The Inner Canon of Yellow Emperor (《黄帝内经》), combined with the typical rash manifestations of atopic dermatitis, it is believed that atopic dermatitis is mostly deficiency-excess complex, and that pathogens intruding eight weak areas are the core of its pathogenesis. The external cause is exterior deficiencies, with heat, wind, dampness and other pathogenic qi attacking. The heart, lungs, kidneys out of balance, and excess pathogen are the internal cause, in which fire constraint and excessive heat are the basis of the disease, the wind invading leads to the progress of the changes, dampness obstructing channels and colla-terals make the condition persistent. Internal and external pathogens combination and retention result to the course of the disease lingering and difficult to cure. The internal treatment is to regulate zang-fu organs, and the formula could use self-prescribed modified Qingrun Tongluo Decoction (清润通络汤), clearing heart and reducing fire in order to clear the heat and cool the blood, moistening lungs and generating metal to consolidate the exterior and dispel the wind, and nourishing kidneys and draining water to dispel the dampness and activate the collaterals. The external treatment applies maceration, fire acupuncture, wrapping to dredge the eight weak areas and regulate qi and blood in channel, so as to expel pathogens.
2.Flavones in pomelo peel resist fibril formation of human islet amyloid polypeptide.
Cuiyun GAO ; Zhiruo WAN ; Yan LIU ; Yuting MENG ; Xu CHEN ; Xiaohan TANG ; Lingyu HANG ; Hailong YUAN
Chinese Herbal Medicines 2025;17(1):166-177
OBJECTIVE:
Exploring the formation and aggregation of human islet amyloid polypeptide (hIAPP) (amylin) fibers is significant for promoting the prevention and treatment of type II diabetes mellitus (T2DM). Flavones in pomelo peel have visible biological activity in the anti-diabetes aspect. The present study aimed to investigate the effects of five flavones [naringin (NRG), narirutin (NRR), nobiletin (NOB), sinensetin (SIN), and neohesperidin (NHP)] in pomelo peel on peptide aggregation and explore its possible mechanisms. The cell viability of flavones against peptide aggregation was also evaluated.
METHODS:
The thioflavin T (ThT) assay and transmission electron microscopy (TEM) were used for evaluating the inhibition and disaggregation of flavones on peptide aggregation. The interaction mechanism was analyzed by endogenous fluorescence, molecular dynamics (MD) simulations, ultraviolet spectroscopy (UV) and isothermal titration calorimetry (ITC) experiments. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and immune assays were performed to characterize the cell viability of flavones against peptide aggregation.
RESULTS:
The five flavones showed a decrease in fluorescence intensity, fiber number and size under incubation with different molar ratios of hIAPP. The compounds can bind to the aromatic tyrosine (Tyr) residueTyr 37, resulting in the intrinsic fluorescence quenching of the peptides. Five flavones can form hydrogen bonds with hIAPP, which is likely to be based on their phenolic hydroxyl structure. They showed strong binding affinity with peptides. The reaction system of NRG and NRR observed an exothermic reaction, and the others were endothermic reactions. The absorption peaks of the compounds with hIAPP changed and showed hypochromic effects, indicating that there may be π-π stacking interaction. Flavones noticeably increased the cell viability in the presence of amyloid peptides and reduced the absorption intensity induced by peptide oligomers.
CONCLUSION
A total of five flavones in pomelo peel have inhibitory and depolymerization effects on amyloid fibrils, and can significantly protect cells from the toxic effect of hIAPP and reduce the production of toxic oligomers.

Result Analysis
Print
Save
E-mail