1.Efficacy and safety of using an enteral immunonutrition formula in the enhanced recovery after surgery protocol for Chinese patients with gastrointestinal cancers undergoing surgery: A randomized, open-label, multicenter trial (healing trial).
Jianchun YU ; Gang XIAO ; Yanbing ZHOU ; Yingjiang YE ; Han LIANG ; Guole LIN ; Qi AN ; Xiaodong LIU ; Bin LIANG ; Baogui WANG ; Weiming KANG ; Tao YU ; Yulong TIAN ; Chao WANG ; Xiaona WANG
Chinese Medical Journal 2025;138(21):2847-2849
2.Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support.
Dengying YAN ; Qiguang ZHENG ; Kai CHANG ; Rui HUA ; Yiming LIU ; Jingyan XUE ; Zixin SHU ; Yunhui HU ; Pengcheng YANG ; Yu WEI ; Jidong LANG ; Haibin YU ; Xiaodong LI ; Runshun ZHANG ; Wenjia WANG ; Baoyan LIU ; Xuezhong ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1310-1328
Traditional Chinese medicine (TCM) represents a paradigmatic approach to personalized medicine, developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years, and now encompasses large-scale electronic medical records (EMR) and experimental molecular data. Artificial intelligence (AI) has demonstrated its utility in medicine through the development of various expert systems (e.g., MYCIN) since the 1970s. With the emergence of deep learning and large language models (LLMs), AI's potential in medicine shows considerable promise. Consequently, the integration of AI and TCM from both clinical and scientific perspectives presents a fundamental and promising research direction. This survey provides an insightful overview of TCM AI research, summarizing related research tasks from three perspectives: systems-level biological mechanism elucidation, real-world clinical evidence inference, and personalized clinical decision support. The review highlights representative AI methodologies alongside their applications in both TCM scientific inquiry and clinical practice. To critically assess the current state of the field, this work identifies major challenges and opportunities that constrain the development of robust research capabilities-particularly in the mechanistic understanding of TCM syndromes and herbal formulations, novel drug discovery, and the delivery of high-quality, patient-centered clinical care. The findings underscore that future advancements in AI-driven TCM research will rely on the development of high-quality, large-scale data repositories; the construction of comprehensive and domain-specific knowledge graphs (KGs); deeper insights into the biological mechanisms underpinning clinical efficacy; rigorous causal inference frameworks; and intelligent, personalized decision support systems.
Medicine, Chinese Traditional/methods*
;
Artificial Intelligence
;
Humans
;
Precision Medicine
;
Decision Support Systems, Clinical
3.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
4.Natural killer cell-derived granzyme B as a therapeutic target for alleviating graft injury during liver transplantation.
Kai WANG ; Zhoucheng WANG ; Xin SHAO ; Lijun MENG ; Chuanjun LIU ; Nasha QIU ; Wenwen GE ; Yutong CHEN ; Xiao TANG ; Xiaodong WANG ; Zhengxing LIAN ; Ruhong ZHOU ; Shusen ZHENG ; Xiaohui FAN ; Xiao XU
Acta Pharmaceutica Sinica B 2025;15(10):5277-5293
Liver transplantation (LT) has become a standard treatment for end-stage liver diseases, and graft injury is intricately associated with poor prognosis. Granzyme B (GZMB) plays a vital role in natural killer (NK) cell biology, but whether NK-derived GZMB affects graft injury remains elusive. Through the analysis of single-cell RNA-sequencing data obtained from human LT grafts and the isolation of lymphocytes from mouse livers following ischemia-reperfusion injury (IRI), we demonstrated that 2NK cells with high expression of GZMB are enriched in patients and mice. Both systemically and liver-targeted depletion of NK cells led to a notable reduction in GZMB+ cell infiltration, subsequently resulting in diminished graft injury. Notably, the reconstitution of Il2rg -/- Rag2 -/- mice with purified Gzmb-KO NK cells demonstrated superior outcomes compared to those with wild-type NK cells. Crucially, global knockout of GZMB and pharmacological inhibition exhibited remarkable improvements in liver function in both mouse IRI and rat LT models. Moreover, a phosphorylated derivative of FDA-approved vidarabine was identified as an effective inhibitor of mouse GZMB activity by molecular dynamics, which could provide a potential avenue for therapeutic intervention. Therefore, targeting NK cell-derived GZMB during the LT process suggests potential therapeutic strategies to improve post-transplant outcomes.
5.Ecological factors impacting genetic characteristics and metabolite accumulations of Gastrodia elata.
Zhaoyu ZHANG ; Xiaodong LI ; Yuchi ZHANG ; Niegui YIN ; Guoying WU ; Guangfei WEI ; Yuxin ZHOU ; Shilin CHEN ; Linlin DONG
Chinese Herbal Medicines 2025;17(3):562-574
OBJECTIVE:
The investigation of the correlation between ecological factors and the genetic characteristics or metabolites of plants offers valuable insights into the regional causes of genetic and metabolic diversity. Here, Gastrodia elata, a medicinal plant, is employed as a model to explore the environmental factors that influence its genetic characteristics and metabolic accumulations.
METHODS:
A total of 23 G. elata populations from six cultispecies and 11 cultivated regions were selected based on the predictions of the global geographic information system. The genetic characteristics of these populations were evaluated using highly polymorphic simple sequence repeat markers. Additionally, the metabolic accumulations and antioxidant capacity of mature tubers were measured employing colorimetry and high performance liquid chromatography (HPLC). Ecological data of each region were obtained from the WorldClim-global climate database and harmonized world soil database. To assess the influence of ecological factors on the genetic characteristics and metabolic profiles of G. elata, Pearson's correlation analysis was conducted.
RESULTS:
Genetic variation among G. elata populations exceeded that within populations. Genetic diverisity, distance and structure manifested regional and species-specific patterns. Metabolic profiling and antioxidant capacity exhibited regional variations. Notably, the Lueyang region demonstrated that a content range of total polysaccharide, total protein, and phenolic glycosides was 9.34%-189.67% higher than the average. Similarly, in the Hubei region, total phenolic content, p-hydroxybenzyl alcohol content, and antioxidant indicators were observed to be higher than the average levels, by 106.57%, 136.47% and 12.50%-91.14%, respectively. Furthermore, ecological factors had a significant comprehensive impact on G. elata genetic characteristics (r > 0.256 and P < 0.05). Multivariate metabolite accumulations in G. elata were influenced by dominant ecological factors. Temperature notably impacted the accumulation of total protein (|r| > 0.528 and P < 0.05). Moisture, encompassing precipitation and soil content, significantly affected the production of phenolic glycosides (|r| > 0.503 and P < 0.05).
CONCLUSION
The genetic characteristics of G. elata manifested regional and species-specific patterns, with the metabolic accumulations and antioxidant capacity of mature tubers exhibited regional variations. Specifically, multivariate ecological factors comprehensively influenced genetic characteristics. Temperature and moisture played pivotal roles in regulating the accumulations of proteins and phenolic glycosides, respectively. These findings underscore the significant impact of ecological factors on the shaping of G. elata, highlighting their crucial role in enhancing the quality of Chinese medicinal materials.
6.GPCRs identified on mitochondrial membranes: New therapeutic targets for diseases.
Yanxin PAN ; Ning JI ; Lu JIANG ; Yu ZHOU ; Xiaodong FENG ; Jing LI ; Xin ZENG ; Jiongke WANG ; Ying-Qiang SHEN ; Qianming CHEN
Journal of Pharmaceutical Analysis 2025;15(7):101178-101178
G protein-coupled receptors (GPCRs) are the largest family of membrane proteins in eukaryotes, with nearly 800 genes coding for these proteins. They are involved in many physiological processes, such as light perception, taste and smell, neurotransmitter, metabolism, endocrine and exocrine, cell growth and migration. Importantly, GPCRs and their ligands are the targets of approximately one third of all marketed drugs. GPCRs are traditionally known for their role in transmitting signals from the extracellular environment to the cell's interior via the plasma membrane. However, emerging evidence suggests that GPCRs are also localized on mitochondria, where they play critical roles in modulating mitochondrial functions. These mitochondrial GPCRs (mGPCRs) can influence processes such as mitochondrial respiration, apoptosis, and reactive oxygen species (ROS) production. By interacting with mitochondrial signaling pathways, mGPCRs contribute to the regulation of energy metabolism and cell survival. Their presence on mitochondria adds a new layer of complexity to the understanding of cellular signaling, highlighting the organelle's role as not just an energy powerhouse but also a crucial hub for signal transduction. This expanding understanding of mGPCR function on mitochondria opens new avenues for research, particularly in the context of diseases where mitochondrial dysfunction plays a key role. Abnormalities in the phase conductance pathway of GPCRs located on mitochondria are closely associated with the development of systemic diseases such as cardiovascular disease, diabetes, obesity and Alzheimer's disease. In this review, we examined the various types of GPCRs identified on mitochondrial membranes and analyzed the complex relationships between mGPCRs and the pathogenesis of various diseases. We aim to provide a clearer understanding of the emerging significance of mGPCRs in health and disease, and to underscore their potential as therapeutic targets in the treatment of these conditions.
7.Assessment of intervention measures on trihalomethane in finished water by interrupted time series analysis
Yangyang REN ; Hailei QIAN ; Saifeng PEI ; Xiaodong SUN ; Zheng WU ; Chen WU ; Jingxian ZHOU ; Aimin DU ; Shaofeng SUI
Journal of Environmental and Occupational Medicine 2024;41(4):420-424
Background The Qingcaosha Reservoir is facing issues of algal blooms and eutrophication, and the resulting increase in the level of chlorination disinfection by-products in the water has been a major concern. Objective To evaluate the impact of "Algae Monitoring and Control Program in Qingcaosha Reservoir" (hereinafter referred to as the program) on the control of trihalomethanes (THMs) in conventional finished water. Methods From 2011 to 2019, water samples were collected from the Lujiazui Water Plant once per season, one sample each time, and the concentrations of four THMs (trichloromethane, dichlorobromomethane, monochlorodibromomethane, and tribromomethane) were measured in the samples. Using 2014 when the program was implemented as a cut-off point, the entire study period was divided into two phases: pre-implementation (2011–2013) and post-implementation(2014–2019). Segmented linear regression with interrupted time series analysis was applied to assess the concentrations and trends of THMs in the finished water before and after the program launch. Results The concentration of total THMs in finished water increased by 1.561 µg·L−1 (P=0.010) for each season of time extension before launching the program. The change in the concentration of total THMs in finished water was not statistically significant after the program launch, but the THMs concentration showed a decreasing trend as the slope was −0.626 (P=0.001). From 2017 until the end of 2019, the average concentration of THMs in finished water of Lujiazui Water Plant dropped to 10 μg·L−1 or less. Conclusions The algae and eutrophication control measures in Qingcaosha Reservoir have achieved good results, controlling THMs in finished water at a low level, and the trend of THMs has changed from a yearly increase pattern before the program to a yearly decrease pattern after the program.
8.A national questionnaire survey on endoscopic treatment for gastroesophageal varices in portal hypertension in China
Xing WANG ; Bing HU ; Yiling LI ; Zhijie FENG ; Yanjing GAO ; Zhining FAN ; Feng JI ; Bingrong LIU ; Jinhai WANG ; Wenhui ZHANG ; Tong DANG ; Hong XU ; Derun KONG ; Lili YUAN ; Liangbi XU ; Shengjuan HU ; Liangzhi WEN ; Ping YAO ; Yunxiao LIANG ; Xiaodong ZHOU ; Huiling XIANG ; Xiaowei LIU ; Xiaoquan HUANG ; Yinglei MIAO ; Xiaoliang ZHU ; De'an TIAN ; Feihu BAI ; Jitao SONG ; Ligang CHEN ; Yingcai MA ; Yifei HUANG ; Bin WU ; Xiaolong QI
Chinese Journal of Digestive Endoscopy 2024;41(1):43-51
Objective:To investigate the current status of endoscopic treatment for gastroesophageal varices in portal hypertension in China, and to provide supporting data and reference for the development of endoscopic treatment.Methods:In this study, initiated by the Liver Health Consortium in China (CHESS), a questionnaire was designed and distributed online to investigate the basic condition of endoscopic treatment for gastroesophageal varices in portal hypertension in 2022 in China. Questions included annual number and indication of endoscopic procedures, adherence to guideline for preventing esophagogastric variceal bleeding (EGVB), management and timing of emergent EGVB, management of gastric and isolated varices, and improvement of endoscopic treatment. Proportions of hospitals concerning therapeutic choices to all participant hospitals were calculated. Guideline adherence between secondary and tertiary hospitals were compared by using Chi-square test.Results:A total of 836 hospitals from 31 provinces (anotomous regions and municipalities) participated in the survey. According to the survey, the control of acute EGVB (49.3%, 412/836) and the prevention of recurrent bleeding (38.3%, 320/836) were major indications of endoscopic treatment. For primary [non-selective β-blocker (NSBB) or endoscopic therapies] and secondary prophylaxis (NSBB and endoscopic therapies) of EGVB, adherence to domestic guideline was 72.5% (606/836) and 39.2% (328/836), respectively. There were significant differences in the adherence between secondary and tertiary hospitals in primary prophylaxis of EGVB [71.0% (495/697) VS 79.9% (111/139), χ2=4.11, P=0.033] and secondary prophylaxis of EGVB [41.6% (290/697) VS 27.3% (38/139), χ2=9.31, P=0.002]. A total of 78.2% (654/836) hospitals preferred endoscopic therapies treating acute EGVB, and endoscopic therapy was more likely to be the first choice for treating acute EGVB in tertiary hospitals (82.6%, 576/697) than secondary hospitals [56.1% (78/139), χ2=46.33, P<0.001]. The optimal timing was usually within 12 hours (48.5%, 317/654) and 12-24 hours (36.9%, 241/654) after the bleeding. Regarding the management of gastroesophageal varices type 2 and isolated gastric varices type 1, most hospitals used cyanoacrylate injection in combination with sclerotherapy [48.2% (403/836) and 29.9% (250/836), respectively], but substantial proportions of hospitals preferred clip-assisted therapies [12.4% (104/836) and 26.4% (221/836), respectively]. Improving the skills of endoscopic doctors (84.2%, 704/836), and enhancing the precision of pre-procedure evaluation and quality of multidisciplinary team (78.9%, 660/836) were considered urgent needs in the development of endoscopic treatment. Conclusion:A variety of endoscopic treatments for gastroesophageal varices in portal hypertension are implemented nationwide. Participant hospitals are active to perform emergent endoscopy for acute EGVB, but are inadequate in following recommendations regarding primary and secondary prophylaxis of EGVB. Moreover, the selection of endoscopic procedures for gastric varices differs greatly among hospitals.
9.Gut microbiota aids in differentiating proximal colorectal cancer in the combination of tumor markers
Tianchen HUANG ; Xiaodong HAN ; Yong ZHANG ; Kan LI ; Zhipeng GUO ; Lei LI ; Yachao WU ; Yanjun WANG ; Dongxiao BAI ; Jianan XIAO ; Jiangman ZHAO ; Fuyou ZHOU ; Weili LI
Chinese Journal of Laboratory Medicine 2024;47(4):444-450
Objective:To explore the differences in bacterial community structure between proximal colon cancer (PC), distal colon cancer (DC), and rectal cancer (RC), and the values of featured microbiota in differentiating PC with tumor markers.Methods:This case-control study enrolled 85 newly diagnosed colorectal cancer patients, including 22 PC, 15 DC and 48 RC patients, and 8 colorectal adenoma patients from May 2019 to July 2022 at the Department of General Surgery, Anyang Oncology Hospital. The blood and fecal samples were collected before surgery and then subjected to biochemical tests for tumor markers and 16S rDNA tests, respectively. SPSS (27.0.1) was applied to perform the t-test, one-way ANOVA, Mann-Whitney U test, Kruskal-Wallis H test, and Chi-Squared Test. Also, the receiver operating characteristic curve (ROC) was plotted on tumor markers and/or f_Bacteroidaceae with SPSS software .Results:All groups had significant differences in the CA125 ( F=3.543, P<0.05), CA72-4 ( F=3.596, P<0.05), and serum tumor-associated materials (TAM) levels ( F=5.787, P<0.01). In PC group, the levels of CA125 [PC vs RC, (36.84±6.30) kU/L vs (12.73±4.21) kU/L, P<0.01] and CA72-4 [PC vs RC, (45.56±10.86) kU/L vs (3.30±7.63) kU/L, P<0.01] were significantly higher than that of the RC group, while the level of TAM was remarkably elevated in PC group than in RC group [PC vs RC, (124.84±5.19) U/ml vs (102.44±3.63) U/ml, P<0.001] and CRA group [PC vs CRA, (124.84±5.19) U/ml vs (95.39±8.42) U/ml, P<0.01]. The LEfSe analysis showed that the featured microbiota in the PC group included f_Bacteroidaceae, f_Neisseriaceae, f_Clostridiaceae_1, f_Spirochaetaceae, and so on. The largest area under the ROC belonged to the combination of TAM and f_Bacteroidaceae, which reached 0.845 (95% CI 0.747-0.944), with sensitivity being 0.857 and specificity being 0.815. Conclusions:There is heterogeneity in gut microbiota composition among PC, DC, RC, and CRA. The combination of gut microbiota and tumor biomarkers demonstrated good differentiating effects in proximal colon cancers.
10.3D printing process of gelatin/oxidized nanocellulose skin scaffold with high elastic modulus and high porosity
Xiaodong XU ; Jiping ZHOU ; Qi ZHANG ; Chen FENG ; Mianshun ZHU ; Hongcan SHI
Chinese Journal of Tissue Engineering Research 2024;28(3):398-403
BACKGROUND:In the treatment of skin trauma with active repair,tissue engineering techniques are needed to generate new tissue to replace necrotic tissue.Skin scaffolds have a good application prospect in the field of wound repair.Skin scaffolds need to present three-dimensional porous structures with certain mechanical strength to meet the needs of cell proliferation and division.However,the mechanical strength of the currently used gelatin-based biomaterials is weak and cannot meet the requirements of the use of skin scaffolds. OBJECTIVE:To study the 3D printing process used in the preparation of tissue engineering skin scaffolds by gelatin/oxidized nanocellulose composites,and focus on the relationship between the porosity and mechanical strength of the scaffolds prepared under different process parameters. METHODS:Oxidized nanocellulose whiskers at 10%concentration were extracted from Humulus scandens and then compounded with 5%gelatin to obtain gelatin/oxidized nanocellulose composites.The elastic modulus of gelatin and gelatin/oxidized nanocellulose composite was determined.Skin scaffolds were prepared by 3D printing extrusion molding using gelatin/oxidized nanocellulose composite as the base material.Mechanical and rheological properties of the composite were tested to determine extrusion molding parameters(filling gap 1.5-2.5 mm,uniform distribution of 0.1 mm;air pressure of 160-200 kPa),and the skin scaffold with a three-dimensional porous structure was prepared.The compressive performance of the skin scaffold was tested and compared with the finite element analysis results.The relationship between the filling gap and the porosity and mechanical strength of the scaffold was demonstrated. RESULTS AND CONCLUSION:(1)The elastic modulus of 5%gelatin was increased by 8.84 times by adding 10%oxidized nanocellulose whisker.A gel filament with a diameter of 1 mm was obtained by extrusion at the air pressure of 160 kPa.When the filling gap increased from 1.5 mm to 2.5 mm,the theoretical porosity of the scaffold increased from 33%to 60%,but the compressive strength decreased from 230 000 Pa to 95 000 Pa.(2)These findings showed that the skin scaffold with theoretical porosity of 50%and elastic modulus of 160 000 Pa was prepared by using 2 mm filling gap.The scaffold had a clear three-dimensional porous structure.

Result Analysis
Print
Save
E-mail