1.Mitochondrial Quality Control Regulating Pathogenesis of Sarcopenia and Its Intervention by Traditional Chinese Medicine: A Review
Ting DAI ; Yan CHEN ; Changsheng GUO ; Jing GAO ; Xiaodong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):279-286
Sarcopenia is a clinical syndrome characterized by a decrease in skeletal muscle strength and quality, often accompanied by adverse outcomes such as falls, loss of function and weakness. The pathogenesis of sarcopenia is complex, and studies have shown that dysfunction due to impaired mitochondrial quality control is an important pathological factor in the occurrence and development. Traditional Chinese medicine(TCM) has been widely favoured for regulating mitochondrial homeostasis and preventing sarcopenia by virtue of its multi-target and multi-pathway advantages. They can play a role in the prevention and treatment of sarcopenia by regulating the mitochondrial quality control system to inhibit the occurrence of mitochondrial oxidative stress, regulate the balance of mitochondrial dynamics, inhibit mitochondrial autophagy, promote mitochondrial biosynthesis, resist the occurrence of mitochondrial apoptosis, and maintain the mitochondrial calcium and protein homeostasis. Based on this, the paper reviewed the relationship between mitochondrial quality control and sarcopenia, as well as the mechanism of TCM in intervening the mitochondrial quality control system to treat sarcopenia, in order to provide a new idea for the prevention and treatment of sarcopenia by TCM and to a theoretical basis for the clinical research on TCM intervention in sarcopenia.
2.Effects of long-term administration of nicotiflorin on neurological function in rats with cerebral ischemia-reperfusion injury
Yifan FENG ; Xiaodong YAN ; Wenbin ZHANG ; Bingfeng LI ; Meili GUO
Journal of Pharmaceutical Practice and Service 2025;43(5):228-234
Objective To explore the promoting effect of long-term administration of nicotiflorin on the recovery of neurological function in rats with cerebral ischemia-reperfusion injury (CIRI). Methods The CIRI model was established and nicotiflorin was injected intraperitoneally after 1 hour of obstruction for 8 weeks. Tail suspension deflection experiment, balance beam experiment and water maze test were performed in the 2nd, 4th and 8th weeks. After 8 weeks, TTC staining was used to observe the volume of infarct atrophy, transcriptome sequencing was employed to screen differential expressed genes (DEGs) and highly enriched pathways were analyzed, Western-bloting and Elisa were used to assess proteins expression related to the pyroptosis pathway and inflammatory cytokines IL-1β and IL-18. Results By long-term administration of nicotiflorin, the contralateral deflection rate was significantly reduced and beam experiment score of CIRI rats was balanced, the number of crossing the platform in water maze test was increased (P<0.05), the volume of cerebral infarction atrophy was decreased (P<0.01), which significantly promoted the recovery of neurological function in rats. Transcriptome sequencing found that the expression of genes in the pyroptosis-related signaling pathways in the brain tissue of rats in the nicotiflorin group was significantly down-regulated (P<0.05). Western-blot and Elisa experiments showed that nicotiflorin reduced the expression levels of Caspase-1 and GSDMD-N and other pyroptosis-related proteins, and at the same time, the release of inflammatory factors IL-1β and IL-18 was significantly reduced (P<0.05), indicating that nicotiflorin could inhibit the inflammatory process of pyroptosis. Conclusion Nicotiflorin exhibited a significant long-term promotion effect on the recovery of neurological function in CIRI rats, which potentially attributed from its ability to inhibit pyroptosis.
3.Regulation of Ferroptosis by Traditional Chinese Medicine for Colorectal Cancer Intervention: A Review
Xiangchen LIU ; Weihan ZHAO ; Feixue FENG ; Xiaodong YANG ; Zhilong ZHAO ; Dezhen YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):276-286
Colorectal cancer (CRC) is a common malignant tumor of the digestive tract with high morbidity and mortality. Although existing treatments can prolong the survival of patients, problems such as low quality of life, obvious side effects, and unsatisfactory clinical efficacy still exist, which cannot fully satisfy the overall needs of patients. For this reason, it is crucial to explore the mechanism underlying the development of CRC and to identify new treatment strategies. In recent years, with the deepening of research, ferroptosis has been gradually proven to effectively inhibit the proliferation and metastasis of CRC cells, overcome tumor drug resistance, enhance anti-tumor efficacy, and prevent tumor progression and recurrence. Therefore, regulating ferroptosis is expected to become a new strategy for the treatment of CRC. Traditional Chinese medicine (TCM) has been widely used in CRC treatment due to its advantages of multiple components, multiple targets, low drug resistance, and few side effects, and has gradually become a current research hotspot. Extensive studies have shown that TCM active ingredients and compound formulae can regulate ferroptosis-related pathways, such as iron metabolism, lipid metabolism, the cystine/glutamate antiporter system Xc- (System Xc-)/glutathione (GSH)/glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate [NAD(P)H], tumor protein 53 (p53), nuclear factor erythroid-2-related factor 2 (Nrf2), and non-coding RNA pathways to inhibit the growth and proliferation of CRC, thereby exerting anti-tumor effects. This review systematically summarized the mechanisms of ferroptosis related to CRC, therapeutic targets and prognosis-related markers associated with ferroptosis in CRC, and research progress on TCM targeting and regulating ferroptosis for CRC intervention, aiming to provide new perspectives and a theoretical basis for the prevention and treatment of CRC with TCM.
4.Regulation of Ferroptosis by Traditional Chinese Medicine for Colorectal Cancer Intervention: A Review
Xiangchen LIU ; Weihan ZHAO ; Feixue FENG ; Xiaodong YANG ; Zhilong ZHAO ; Dezhen YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):276-286
Colorectal cancer (CRC) is a common malignant tumor of the digestive tract with high morbidity and mortality. Although existing treatments can prolong the survival of patients, problems such as low quality of life, obvious side effects, and unsatisfactory clinical efficacy still exist, which cannot fully satisfy the overall needs of patients. For this reason, it is crucial to explore the mechanism underlying the development of CRC and to identify new treatment strategies. In recent years, with the deepening of research, ferroptosis has been gradually proven to effectively inhibit the proliferation and metastasis of CRC cells, overcome tumor drug resistance, enhance anti-tumor efficacy, and prevent tumor progression and recurrence. Therefore, regulating ferroptosis is expected to become a new strategy for the treatment of CRC. Traditional Chinese medicine (TCM) has been widely used in CRC treatment due to its advantages of multiple components, multiple targets, low drug resistance, and few side effects, and has gradually become a current research hotspot. Extensive studies have shown that TCM active ingredients and compound formulae can regulate ferroptosis-related pathways, such as iron metabolism, lipid metabolism, the cystine/glutamate antiporter system Xc- (System Xc-)/glutathione (GSH)/glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate [NAD(P)H], tumor protein 53 (p53), nuclear factor erythroid-2-related factor 2 (Nrf2), and non-coding RNA pathways to inhibit the growth and proliferation of CRC, thereby exerting anti-tumor effects. This review systematically summarized the mechanisms of ferroptosis related to CRC, therapeutic targets and prognosis-related markers associated with ferroptosis in CRC, and research progress on TCM targeting and regulating ferroptosis for CRC intervention, aiming to provide new perspectives and a theoretical basis for the prevention and treatment of CRC with TCM.
5.A Randomized Controlled,Double-Blind Study on Huaban Jiedu Formulation (化斑解毒方) in the Treatment of Psoriasis Vulgaris with Blood-Heat Syndrome
Xuewen REN ; Yutong DENG ; Huishang FENG ; Bo HU ; Jianqing WANG ; Zhan CHEN ; Xiaodong LIU ; Xinhui YU ; Yuanwen LI
Journal of Traditional Chinese Medicine 2025;66(16):1679-1686
ObjectiveTo evaluate the clinical efficacy and safety of Huaban Jiedu Formulation (化斑解毒方, HJF) in treating psoriasis vulgaris with blood-heat syndrome. MethodsA randomized, double-blind, placebo-controlled study was conducted with 60 patients diagnosed with psoriasis vulgaris of blood-heat syndrome. Patients were randomly assigned to either a treatment group or a control group, with 30 cases in each. The treatment group received HJF granules orally, one dose a day, combined with topical Qingshi Zhiyang Ointment (青石止痒软膏), while the control group received placebo granules, one dose a day, combined with the same topical ointment. Both groups were topically treated twice daily of 28 days treatment cours. Psoriasis area and severity index (PASI), visual analogue scale for pruritus (VAS), traditional Chinese medicine (TCM) syndrome scores, dermatology life quality index (DLQI), and psoriasis life stress inventory (PLSI) were assessed before treatment and on day 14 and day 28. Response rates for PASI 50 (≥50% reduction) and PASI 75 (≥75% reduction), as well as overall clinical efficacy, were compared between groups. Serum levels of interleukin-6 (IL-6) and interleukin-17 (IL-17) were measured before and after 28 days of treatment. Adverse reactions during treatment were recorded. ResultsAfter 28 days of treatment, both groups showed significant reductions in PASI total score, lesion area score, erythema, scaling, and infiltration scores, pruritus VAS score, TCM syndrome score, DLQI, PLSI, and serum IL-6 and IL-17 levels (P<0.05). Compared to the control group, the treatment group had significantly greater improvements in PASI total score and erythema score, TCM syndrome score, serum IL-6 and IL-17 levels, and PASI 50 response rate after 28 days (P<0.05). Between-group comparisons of score differences before and after 28-day treatment revealed that the treatment group showed significantly better improvements in PASI total, lesion area score, erythema score, TCM syndrome score, DLQI, PLSI, and inflammatory markers (P<0.05 or P<0.01). The total effective rate on day 14 and day 28 was 40.00% (12/30) and 83.33% (25/30) in the treatment group, versus 6.90% (2/29) and 41.38% (12/29) in the control group, respectively. The clinical efficacy in the treatment group was significantly superior to that in the control group (P<0.05). Mild gastric discomfort occurred in 3 patients in the treatment group and 1 in the control group. ConclusionHJF can effectively improve skin lesions and TCM symptoms relieve pruritus, enhance quality of life, and reduce inflammatory markers IL-6 and IL-17, in patients with blood-heat syndrome of psoriasis vulgaris, with a good safety profile.
6.Advances on Exercise-mediated Regulation of Programmed Cell Death in the Management of Sarcopenia
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(5):737-746
With the acceleration of global population aging, sarcopenia, characterized by a progressive loss of skeletal muscle mass, strength, and physical function, has become a major public health issue that seriously threatens the health and quality of life in older adults. The development and progression of sarcopenia involve complex, multi-level, and cross-system cellular and molecular mechanisms. Recent studies have highlighted the central role of programmed cell death (PCD) in maintaining skeletal muscle homeostasis, regulating metabolism, and mediating tissue repair. The classic forms of PCD-apoptosis, autophagy, pyroptosis, and ferroptosis-interact through critical nodes such as reactive oxygen species(ROS) accumulation, mitochondrial dysfunction, and iron homeostasis disruption, ultimately driving muscle fiber loss, functional decline, and chronic inflammation. These processes underpin the pathology of sarcopenia. Exercise, the most effective non-pharmacological intervention to date, has been shown to precisely regulate multiple PCD pathways. It improves muscle mass, strength, and metabolic stability, and delays the progression of sarcopenia. Specifically, appropriate exercise could inhibit excessive apoptosis, activate protective autophagy, alleviate NLRP3 inflammasome-mediated pyroptosis, and suppress ferroptosis by enhancing antioxidant defenses and maintaining iron homeostasis. This review systematically summarizes the roles and mechanisms of apoptosis, autophagy, pyroptosis, and ferroptosis in sarcopenia. It particularly focuses on the molecular targets and physiological effects of exercise-mediated PCD regulation. The aim is to provide theoretical and practical support for developing personalized and precision exercise interventions targeting PCD pathways for the prevention and management of sarcopenia.
7.Effects of electroacupuncture on mitochondrial autophagy and Sirt1/FOXO3/PINK1/Parkin pathway in rats with learning-memory impairment after cerebral ischemia reperfusion injury.
Kaiqi SU ; Zhuan LV ; Ming ZHANG ; Lulu CHEN ; Hao LIU ; Jing GAO ; Xiaodong FENG
Chinese Acupuncture & Moxibustion 2025;45(2):193-199
OBJECTIVE:
To observe the effects of electroacupuncture (EA) at "Shenting" (GV24) and "Baihui" (GV20) on mitochondrial autophagy in hippocampal neurons and silent information regulator sirtuin 1 (Sirt1)/forkhead box O3 (FOXO3)/PTEN-inducible kinase 1 (PINK1)/Parkin pathway in rats with learning-memory impairment after cerebral ischemia reperfusion injury.
METHODS:
A total of 35 male SD rats were randomly divided into a sham operation group (9 rats) and a modeling group (26 rats). In the modeling group, middle cerebral artery occlusion method was used to establish the middle cerebral artery ischemia-reperfusion (MCAO/R) model, and 18 rats of successful modeling were randomly divided into a model group and an EA group, 9 rats in each one. EA was applied at "Shenting" (GV24) and "Baihui" (GV20) in the EA group, 30 min a time, once a day for 14 days. After modeling and on 7th and 14th days of intervention, neurologic deficit score was observed; the learning-memory ability was detected by Morris water maze test; the morphology of neurons in CA1 area of hippocampus was detected by Nissl staining; the mitochondrial morphology was observed by transmission electron microscopy; the protein expression of Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B), P62, Sitrt1, FOXO3, PINK1 and Parkin was detected by Western blot.
RESULTS:
After modeling, the neurologic deficit scores in the model group and the EA group were higher than that in the sham operation group (P<0.001); on 7th and 14th days of intervention, the neurologic deficit scores in the model group were higher than those in the sham operation group (P<0.001), the neurologic deficit scores in the EA group were lower than those in the model group (P<0.05, P<0.01). After modeling, the escape latency in the model group and the EA group was prolonged compared with that in the sham operation group (P<0.001); on 9th-13th days of intervention, the escape latency in the model group was prolonged compared with that in the sham operation group (P<0.001), the escape latency in the EA group was shortened compared with that in the model group (P<0.05, P<0.01, P<0.001). The number of crossing plateau in the model group was less than that in the sham operation group (P<0.001); the number of crossing plateau in the EA group was more than that in the model group (P<0.05). In the model group, in CA1 area of hippocampus, the number of neurons was less, with sparse arrangement, nuclear fixation, deep cytoplasmic staining, and reduction of Nissl substance; the morphology of mitochondrion was swollen, membrane structure was fragmented, and autophagic lysosomes were formed. Compared with the model group, in the EA group, in CA1 area of hippocampus, the number of neurons was increased, the number of cells of abnormal morphology was decreased, and the number of Nissl substance was increased; the morphology of mitochondrion was more intact and the number of autophagic lysosomes was increased. Compared with the sham operation group, in the model group, the protein expression of Beclin-1, FOXO3, PINK1, Parkin and the LC3BⅡ/Ⅰ ratio in hippocampus were increased (P<0.01, P<0.001), while the protein expression of P62 was decreased (P<0.05). Compared with the model group, in the EA group, the protein expression of Beclin-1, Sirt1, FOXO3, PINK1, Parkin and the LC3BⅡ/Ⅰratio in hippocampus were increased (P<0.001, P<0.01), while the protein expression of P62 was decreased (P<0.001).
CONCLUSION
EA at "Shenting" (GV24) and "Baihui" (GV20) can relieve the symptoms of neurological deficits and improve the learning-memory ability in MCAO/R rats, its mechanism may relate to the modulation of Sirt1/FOXO3/PINK1/Parkin pathway and the enhancement of mitochondrial autophagy.
Animals
;
Electroacupuncture
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Forkhead Box Protein O3/genetics*
;
Reperfusion Injury/metabolism*
;
Ubiquitin-Protein Ligases/genetics*
;
Brain Ischemia/complications*
;
Mitochondria/genetics*
;
Autophagy
;
Protein Kinases/genetics*
;
Sirtuin 1/genetics*
;
Humans
;
Memory Disorders/psychology*
;
Signal Transduction
8.Performance evaluation of a wearable steady-state visual evoked potential based brain-computer interface in real-life scenario.
Xiaodong LI ; Xiang CAO ; Junlin WANG ; Weijie ZHU ; Yong HUANG ; Feng WAN ; Yong HU
Journal of Biomedical Engineering 2025;42(3):464-472
Brain-computer interface (BCI) has high application value in the field of healthcare. However, in practical clinical applications, convenience and system performance should be considered in the use of BCI. Wearable BCIs are generally with high convenience, but their performance in real-life scenario needs to be evaluated. This study proposed a wearable steady-state visual evoked potential (SSVEP)-based BCI system equipped with a small-sized electroencephalogram (EEG) collector and a high-performance training-free decoding algorithm. Ten healthy subjects participated in the test of BCI system under simplified experimental preparation. The results showed that the average classification accuracy of this BCI was 94.10% for 40 targets, and there was no significant difference compared to the dataset collected under the laboratory condition. The system achieved a maximum information transfer rate (ITR) of 115.25 bit/min with 8-channel signal and 98.49 bit/min with 4-channel signal, indicating that the 4-channel solution can be used as an option for the few-channel BCI. Overall, this wearable SSVEP-BCI can achieve good performance in real-life scenario, which helps to promote BCI technology in clinical practice.
Brain-Computer Interfaces
;
Humans
;
Evoked Potentials, Visual/physiology*
;
Electroencephalography
;
Wearable Electronic Devices
;
Algorithms
;
Signal Processing, Computer-Assisted
;
Adult
;
Male
9.Amentoflavone alleviates acute lung injury in mice by inhibiting cell pyroptosis.
Yalei SUN ; Meng LUO ; Changsheng GUO ; Jing GAO ; Kaiqi SU ; Lidian CHEN ; Xiaodong FENG
Journal of Southern Medical University 2025;45(4):692-701
OBJECTIVES:
To investigate the effect of amentoflavone (AF) for alleviating lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and inhibiting NLRP3/ASC/Caspase-1 axis-mediated pyroptosis.
METHODS:
Female BALB/c mice were randomly divided into control group, LPS group, and AF treatment groups at low, moderate and high doses (n=12). ALI models were established by tracheal LPS instillation, and in AF treatment groups, AF was administered by gavage 30 min before LPS instillation. Six hours after LPS instillation, the mice were euthanized for examining lung tissue histopathological changes, protein levels in BALF, and MPO levels in the lung tissue. In the in vitro experiment, RAW264.7 cells were pretreated with AF, AC (a pyroptosis inhibitor), or their combination for 2 h before stimulation with LPS and ATP. The changes in cell proliferation and viability were detected using CCK-8 assay, and IL-1β, IL-6, IL-18, and TNF-α levels were determined with ELISA. Immunohistochemistry, immunofluorescence assay, and immunoblotting were used to detect the protein levels of NLRP3, ASC, cleaved caspase-1, and GSDMD N in rat lung tissues and the treated cells.
RESULTS:
In mice with LPS exposure, AF treatment significantly improved lung pathologies and edema, reduced protein levels in BALF and pulmonary MPO level, inhibited the high expression of NLRP3/ASC/Aspase-1 axis, reduced the expression of GSDMD N, and lowered the release of IL-1β, IL-6, IL-18, and TNF‑α. In RAW264.7 cells with LPS and ATP stimulation, AF pretreatment effectively reduced cell death, inhibited activation of the NLRP3/ASC/Aspase-1 axis, and reduced GSDMD N expression and the inflammatory factors. The pyroptosis inhibitor showed a similar effect to AF, and their combination produced more pronounced effects in RAW264.7 cells.
CONCLUSIONS
Amentoflavone can alleviate ALI in mice possibly by inhibiting NLRP3/ASC/Caspase-1 axis-mediated cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Acute Lung Injury/pathology*
;
Mice
;
Mice, Inbred BALB C
;
Female
;
Lipopolysaccharides
;
Biflavonoids/pharmacology*
;
RAW 264.7 Cells
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Caspase 1/metabolism*
;
Lung
10.A single repetition time quantitative magnetic susceptibility imaging method for the lumbar spine using bipolar readout gradient.
Zhenxiang DONG ; Yihao GUO ; Qiang LIU ; Yizhe ZHANG ; Qianyi QIU ; Xiaodong ZHANG ; Yanqiu FENG
Journal of Southern Medical University 2025;45(6):1336-1342
OBJECTIVES:
To propose a single repetition time (TR) quantitative magnetic susceptibility imaging method for the lumbar spine using bipolar readout gradient, and compare the quantitative magnetic susceptibility measurement using single TR and dual TR methods for the lumbar spine with different bone densities.
METHODS:
A translation correction method was proposed to correct spatial misalignment along the frequency encoding direction between positive and negative gradient readout images, and the phase difference between the images was eliminated using a phase correction method. The data of lumbar vertebrae L1-L5 were collected using single TR and dual TR methods from 6 normal individuals, 2 patients with osteopenia, and 2 patients with osteoporosis. The magnetic susceptibility map was reconstructed, the quantitative results of single TR before and after correction were compared with those of the dual TR method.
RESULTS:
The linear regression result of the lumbar spine magnetic susceptibility values obtained by the single TR method before calibration and the dual TR method is Y=0.64*X-11.61. The linear regression result of the lumbar spine magnetic susceptibility values corrected by the single TR method and the dual TR method is Y=1.03*X+0.25. The results of the corrected single TR method were highly consistent with those of the dual TR method, and the calibrated single TR method could effectively distinguish osteopenia and osteoporosis patients from normal individuals.
CONCLUSIONS
The calibrated single TR bipolar readout gradient method can generate artifact-free lumbar spine quantitative magnetic susceptibility distribution maps and reduce data acquisition time by 50%.
Humans
;
Lumbar Vertebrae/pathology*
;
Magnetic Resonance Imaging/methods*
;
Female
;
Middle Aged
;
Male
;
Osteoporosis/diagnosis*
;
Adult
;
Bone Density
;
Aged
;
Bone Diseases, Metabolic/diagnosis*

Result Analysis
Print
Save
E-mail