1.Systemic comparison of molecular characteristics in different skin fibroblast senescent models.
Xiaokai FANG ; Shan ZHANG ; Mingyang WU ; Yang LUO ; Xingyu CHEN ; Yuan ZHOU ; Yu ZHANG ; Xiaochun LIU ; Xu YAO
Chinese Medical Journal 2025;138(17):2180-2191
BACKGROUND:
Senescent human skin primary fibroblast (FB) models have been established for studying aging-related, proliferative, and inflammatory skin diseases. The aim of this study was to compare the transcriptome characteristics of human primary dermal FBs from children and the elderly with four senescence models.
METHODS:
Human skin primary FBs were obtained from healthy children (FB-C) and elderly donors (FB-E). Senescence models were generated by ultraviolet B irradiation (FB-UVB), D-galactose stimulation (FB-D-gal), atazanavir treatment (FB-ATV), and replication exhaustion induction (FB-P30). Flow cytometry, immunofluorescence staining, real-time quantitative polymerase chain reaction, co-culturing with immune cells, and bulk RNA sequencing were used for systematic comparisons of the models.
RESULTS:
In comparison with FB-C, FB-E showed elevated expression of senescence-related genes related to the skin barrier and extracellular matrix, proinflammatory factors, chemokines, oxidative stress, and complement factors. In comparison with FB-E, FB-UVB and FB-ATV showed higher levels of senescence and expression of the genes related to the senescence-associated secretory phenotype (SASP), and their shaped immune microenvironment highly facilitated the activation of downstream immune cells, including T cells, macrophages, and natural killer cells. FB-P30 was most similar to FB-E in terms of general transcriptome features, such as FB migration and proliferation, and aging-related characteristics. FB-D-gal showed the lowest expression levels of senescence-related genes. In comparisons with the single-cell RNA sequencing results, FB-E showed almost complete simulation of the transcriptional spectrum of FBs in elderly patients with atopic dermatitis, followed by FB-P30 and FB-UVB. FB-E and FB-P30 showed higher similarity with the FBs in keloids.
CONCLUSIONS
Each senescent FB model exhibited different characteristics. In addition to showing upregulated expression of natural senescence features, FB-UVB and FB-ATV showed high expression levels of senescence-related genes, including those involved in the SASP, and FB-P30 showed the greatest similarity with FB-E. However, D-galactose-stimulated FBs did not clearly present aging characteristics.
Humans
;
Fibroblasts/drug effects*
;
Cellular Senescence/physiology*
;
Skin/metabolism*
;
Child
;
Transcriptome/genetics*
;
Aged
;
Ultraviolet Rays
;
Cells, Cultured
;
Galactose/pharmacology*
2.Ten new lignans with anti-inflammatory activities from the leaves of Illicium dunnianum.
Ting LI ; Xiaoqing HE ; Dabo PAN ; Xiaochun ZENG ; Siying ZENG ; Zhenzhong WANG ; Xinsheng YAO ; Wei XIAO ; Haibo LI ; Yang YU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):990-996
The anti-inflammatory phytochemical investigation of the leaves of Illicium dunnianum (I. dunnianum) resulted in the isolation of five pairs of new lignans (1-5), and 7 known analogs (6-12). The separation of enantiomer mixtures 1-5 to 1a/1b-5a/5b was achieved using a chiral column with acetonitrile-water mixtures as eluents. The planar structures of 1-2 were previously undescribed, and the chiral separation and absolute configurations of 3-5 were reported for the first time. Their structures were determined through comprehensive spectroscopic data analysis [nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass (HR-ESI-MS), infrared (IR), and ultraviolet (UV)] and quantum chemistry calculations (ECD). The new isolates were evaluated by measuring their inhibitory effect on NO in lipopolysaccharide (LPS)-stimulated BV-2 cells. Compounds 1a, 3a, 3b, and 5a demonstrated partial inhibition of NO production in a concentration-dependent manner. Western blot and real-time polymerase chain reaction (PCR) assays revealed that 1a down-regulated the messenger ribonucleic acid (mRNA) levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), COX-2, and iNOS and the protein expressions of COX-2 and iNOS. This research provides guidance and evidence for the further development and utilization of I. dunnianum.
Lignans/isolation & purification*
;
Plant Leaves/chemistry*
;
Anti-Inflammatory Agents/isolation & purification*
;
Mice
;
Animals
;
Molecular Structure
;
Plant Extracts/pharmacology*
;
Illicium/chemistry*
;
Cyclooxygenase 2/immunology*
;
Interleukin-6/immunology*
;
Nitric Oxide/metabolism*
;
Cell Line
;
Tumor Necrosis Factor-alpha/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Lipopolysaccharides
3.Cloning and functional analysis of the phenylalanine ammonia-lyase gene from Anthoceros angustus.
Haina YU ; Jian MO ; Jiayi YANG ; Xiaochun QIN
Chinese Journal of Biotechnology 2025;41(7):2855-2870
Anthoceros angustus Steph. is rich in phenolic acids such as rosmarinic acid (RA). Phenylalanine ammonia-lyase (PAL) is an entry enzyme in the phenylpropanoid pathway of plants, playing an important role in the biosynthesis of RA. To investigate the important role of PAL in rosmarinic acid synthesis, two PAL genes (designated as AanPAL1 and AanPAL2) were cloned from A. angustus, encoding 755 and 753 amino acid residues, respectively. The AanPAL deduced amino acid sequences contain the conserved domains of PAL and the core active amino acid residues Ala-Ser-Gly. The phylogenetic analysis indicated that AanPAL1 and AanPAL2 were clustered with PALs from bryophytes and ferns and had the shortest evolutionary distance with the PALs from Physcomitrella patens. Quantitative real-time PCR results showed that the expression of AanPAL1 and AanPAL2 was induced by exogenous methyl jasmonate (MeJA). HPLC results showed that the MeJA treatment significantly increased the accumulation of RA. AanPAL1 and AanPAL2 were expressed in Escherichia coli and purified by histidine-tag affinity chromatography. The recombinant proteins catalyzed the conversion of L-phenylalanine to generate trans-cinnamic acid with high efficiency, with the best performance at 50 ℃ and pH 8.0. The Km and kcat of AanPAL1 were 0.062 mmol/L and 4.35 s-1, and those of AanPAL2 were 0.198 mmol/L and 14.48 s-1, respectively. The specific activities of AanPAL1 and AanPAL2 were 2.61 U/mg and 8.76 U/mg, respectively. The two enzymes had relatively poor thermostability but good pH stability. The high activity of AanPAL2 was further confirmed via whole-cell catalysis with recombinant E. coli, which could convert 1 g/L L-phenylalanine into trans-cinnamic acid with a yield of 100% within 10 h. These results give insights into the regulatory role of AanPAL in the biosynthesis of RA in A. angustus and provide candidate enzymes for the biosynthesis of cinnamic acid.
Phenylalanine Ammonia-Lyase/metabolism*
;
Cloning, Molecular
;
Cinnamates/metabolism*
;
Recombinant Proteins/metabolism*
;
Rosmarinic Acid
;
Depsides/metabolism*
;
Escherichia coli/metabolism*
;
Amino Acid Sequence
;
Plant Proteins/metabolism*
;
Phylogeny
;
Acetates/pharmacology*
;
Cyclopentanes
;
Oxylipins
4.Advancing into a new era of precision medicine in early diagnosis and treatment of Alzheimer′s disease
Chinese Journal of Neurology 2024;57(7):691-697
In recent years, precision medicine has made significant progress in the early diagnosis and treatment of Alzheimer′s disease (AD), bringing revolutionary changes to traditional models. In response to these innovative developments, the Chinese Society of Dementia and Cognitive Impairment, starting from the needs of China′s healthcare system and patients, has formulated and released the "Chinese expert consensus on the diagnosis and treatment of mild cognitive impairment due to Alzheimer′s disease 2024". This consensus establishes a systematic and comprehensive diagnostic and therapeutic framework, which not only provides practical guidelines for implementation but also lays a solid foundation for the new stage of precise prevention and treatment of AD. Based on this, in-depth discussions and comments were conducted on AD′s biomarkers, clinical diagnostic criteria, disease staging, and early intervention strategies, aiming to assist clinical and research professionals in constructing a comprehensive AD precision medicine system and to emphasize the importance of early precision recognition and management of the disease, thus advancing early diagnostic and therapeutic efforts for AD into a new era of precision medicine.
5.Ozonated oil alleviates dinitrochlorobenzene-induced allergic contact dermatitis via inhibiting the FcεRI/Syk signaling pathway.
Zhibing FU ; Yajie XIE ; Liyue ZENG ; Lihua GAO ; Xiaochun YU ; Lina TAN ; Lu ZHOU ; Jinrong ZENG ; Jianyun LU
Journal of Central South University(Medical Sciences) 2023;48(1):1-14
OBJECTIVES:
Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms.
METHODS:
Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions.
RESULTS:
Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1β, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1β, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05).
CONCLUSIONS
Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.
Animals
;
Mice
;
Dinitrochlorobenzene/metabolism*
;
Skin/metabolism*
;
Cytokines/metabolism*
;
Interleukin-17/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Dermatitis, Allergic Contact/pathology*
;
Dermatitis, Atopic/chemically induced*
;
Signal Transduction
;
RNA, Messenger/metabolism*
;
Mice, Inbred BALB C
6.Mechanism of the effect of arginine on radiosensitization of metastatic brain tumors
Xueping LIU ; Yu JIANG ; Ruisi WANG ; Xiaochun LI ; Bangxian TAN
Chinese Journal of Radiation Oncology 2023;32(7):657-662
Brain metastases are the most common intracranial malignancies, and radiotherapy is an effective treatment of controlling the localized lesions. However, conventional radiotherapy techniques have their own shortcomings that limit the effectiveness of radiotherapy. Metastatic brain tumors are highly likely to recur or progress after treatment. Clinical studies have shown that arginine can penetrate the blood-brain barrier and subsequently improve the radiosensitization of metastatic brain tumors. In this article, the mechanisms underlying the effect of arginine on the radiosensitization of metastatic brain tumors by inhibition of tumor glycolytic metabolism, reduction of DNA damage repair and alteration of tumor hemodynamic parameters were reviewed, aiming to provide new ideas for clinical research and treatment of brain metastases.
7.Liraglutide ameliorates high glucose-induced oxidative stress injury in rat H9c2 cells through modulation of SIRT1
Ruixu WANG ; Xue TIAN ; Lihua ZHAO ; Qinglian LI ; Ruitian HOU ; Yu GAO ; Fengbiao JIN ; Shuying LI ; Xiaochun GE
Chinese Journal of Endocrinology and Metabolism 2023;39(7):605-610
Objective:To investigate the effect of liraglutide(LRG) on high glucose-induced oxidative stress injury in(H9c2) cardiomyocytes and its underlying mechanisms.Methods:A high glucose treatment was applied to H9c2 cells for 24 hours to establish an in vitro model of myocardial cell injury. Different concentrations of liraglutide(10, 100, 1000 nmol/L) were administered for intervention. Cell viability was evaluated using the CCK-8 assay, and changes in cell morphology were observed under an inverted microscope. After 24 hours of liraglutide(100 nmol/L) intervention following high glucose treatment, the levels of lactate dehydrogenase(LDH), superoxide dismutase(SOD), and malondialdehyde(MDA) in the cell supernatant were measured. RT-PCR and Western blotting were used to detect the mRNA and protein levels of silent information regulator factor 1(SIRT1) and forkhead box protein O1(FOXO1). Western blotting was also used to assess the acetylation level of FOXO1 protein. Small interfering RNA(siRNA) technology was employed to silence SIRT1 in H9c2 cells to confirm its role in the study. Results:Compared to the control group, the high glucose group showed decreased cell viability, cell structure damage, increased levels of LDH and MDA in the cell supernatant, decreased SOD levels, aggravated oxidative stress, decreased SIRT1 expression, and increased acetylation level of FOXO1(all P<0.05). Compared to the high glucose group, liraglutide intervention resulted in increased cell viability, improved cardiac cell morphology, reduced oxidative stress levels, increased SIRT1 expression, and decreased acetylation level of FOXO1(all P<0.05). When SIRT1 was downregulated, the protective effects of liraglutide were weakened(all P<0.05). Conclusions:Liraglutide has a protective effect against high glucose-induced oxidative stress injury in H9c2 cells, which may be associated with the upregulation of SIRT1 expression.
8.Study on gene expression level of chondrocytes and cartilage in adult rabbits
Wangping DUAN ; Yongzhuang HAO ; Wenjie SONG ; Ruipeng ZHAO ; Xiaochun REN ; Yu ZHAO ; Qi LI ; Zhenwei SUN ; Pengcui LI ; Xiaochun WEI
Chinese Journal of Rheumatology 2023;27(7):459-463
Objective:To investigate the differences in gene expression levels in knee chondrocytes and chondrons in vitro.Methods:The chondrocytes and chondrons were isolated from full thickness of the 8-months ( n=5) rabbit knees cartilage. Chondrons from right knee were enzymatically isolated using 0.3% dispase and 0.2% collagenase-2 with shaking for 3 hours. Chondrocytes were isolated by 0.4% Pronase and 0.025% collagenase-2 from left knee. The mRNA levels in chondrocytes and chondrons were analyzed by quantitative real-time PCR, including matrix proteins [aggrecan(Agg), collagen(Col-2), Col-6A6, Col-10, Col-11], MMPs and inhibitors (MMP-1, MMP-3, MMP-9, MMP-13, TIMP-1, TIMP-2, TIMP-3), cytoskeletal proteins (Sox-9, vinculin, tubulin, actin), cytokines (IL-β, TNF-α). Analysis was performed using SPSS 16.0 statistical software, and the two-group comparisons were considered as significant by t-test at P<0.05. Results:Compared to the chondrocytes, the Agg [(5.78±0.90) vs (1.89±0.27), t=9.26, P<0.001], Col-2 [(6.29±0.76) vs (3.06±0.60), t=7.46, P<0.001], Col-6A6 [(0.89±0.18) vs (0.22±0.06), t=7.90, P<0.001], Col-10 [(3.83±0.76) vs (1.00±0.26), t=7.88, P<0.001] and TIMP-1 [(1.98±0.85) vs (1.03±0.34), t=2.32, P=0.049], TIMP-2[(3.46±1.50) vs (1.52±1.06), t=2.36, P=0.046], TIMP-3 [(3.96±0.50) vs (1.36±0.18), t=10.94, P<0.001], Sox-9 [(7.09±2.93) vs (3.24±0.77), t=2.84, P=0.022], vinculin [(3.42±1.69) vs (1.46±0.68), t=2.41, P=0.043], tubulin[(9.34±0.71) vs (2.35±0.80), t=14.61, P<0.001] showed higher expression in the chondrons. Compared to the chondrocytes, the MMP-1 [(1.02±0.30) vs (2.67±0.45), t=6.91, P<0.001], MMP-3 [(1.21±0.32) vs (2.52±0.79), t=3.44, P=0.009], MMP-13 [(1.23±0.34) vs (3.42±0.86), t=5.30, P=0.007], IL-1β [(1.02±0.14) vs (2.70±0.49), t=7.37, P<0.001], TNF-α [(0.99±0.08) vs (3.15±0.54), t=8.85, P<0.001] showed lower expression in the chondrons. There were no difference between chondrons and chondrocytes for Col-11, MMP-9, actin ( P>0.05). Conclusion:The gene expression of extracellular matrix components are higher and the gene expression levels of inflammatory factors and MMPs are decreased in chondrons compared with the chondrocytes, suggesting the chondrons have more multiplication potential as seeding cells for tissue-engineered cartilage.
9.Adaptive response of A549 cell apoptosis induced by low-dose X-ray irradiation
Xiaoling YU ; Li RONG ; Fang FANG ; Xiaowen DING ; Jue LI ; Xiaochun WANG
Chinese Journal of Radiological Health 2022;31(2):139-143
Objective:
To study the adaptive response and time effect of A549 cell apoptosis induced by low-dose X-ray
irradiation, and to preliminarily explore the possible mechanism of adaptive effect.
Methods:
A549 cells were irradiated with X-ray of 50 mGy, 200 mGy and 500 mGy, respectively, and then irradiated with an effect dose of 20 Gy after intervals of 3 h, 6 h, 12 h, 24 h and 48 h, respectively, for cell apoptosis detection. The cell cycle distribution and DNA damage were detected after an interval of 6 h between the initial dose and the effect dose. 20 Gy and 0 Gy were set as the control.
Results:
After irradiation at 20 Gy at intervals of 3 h, 6 h, 12 h and 24 h from the low- dose irradiation, the apoptosis rates of the 50 mGy~20 Gy, 200 mGy~20 Gy, and 500 mGy~ 20 Gy groups were significantly lower than that of the 20 Gy group
(P < 0.05); after an interval of 48 h, there was no significant difference in the apoptosis rate between the 50 mGy~20 Gy, 200 mGy~20 Gy, and 500 mGy~20 Gy groups and the 20 Gy group. After an interval of 6 h between the low-dose irradiation and the effect dose irradiation, the percentage of cells at G0/G1 phase in the 50 mGy~20 Gy and 200 mGy~20 Gy groups was significantly lower than that in the 20 Gy group (P < 0.05); the percentage of cells at G2/M phase in the 50 mGy~20 Gy and 200 mGy~20 Gy groups were significantly reduced compared with the 20 Gy group (P < 0.05). There was no significant difference in the percentage of cells at G0/G1 and G2/M phases between the 500 mGy~20 Gy and 20 Gy groups. Compared with the 20 Gy group, the cell DNA damage in the 50 mGy~20 Gy, 200 mGy~20 Gy and 500 mGy~20 Gy groups were decreased, but without significant difference.
Conclusion
Low-dose X-ray irradiation can induce the adaptive response of A549 cells apoptosis, which is related to the time interval between the initial dose and the effect dose. The adaptive effect may be related to the changes in cell cycle induced by low-dose X-ray.
10.Molecular Genetic Characteristics of Acute Myeloid Leukemia Patients with CBFβ-MYH11 Positive.
Yu JIANG ; Hong-Ying CHAO ; Xu-Zhang LU ; Pin WU ; Xiao-Chun SUN
Journal of Experimental Hematology 2022;30(6):1661-1667
OBJECTIVE:
To explore mutational characteristics of acute myeloid leukemia (AML) patients with CBFβ-MYH11+ and analyze the correlation between the mutations and partial clinical characteristics.
METHODS:
A total of 62 AML patients with CBFβ-MYH11+ were included and 51 candidate genes were screened for their mutations using targeted next-generation sequencing (NGS). The exon 12 of NPM1 , FLT3-ITD , and TAD, bZIP domains of CEBPA were detected by genomic DNA-PCR combined with sanger sequencing.
RESULTS:
Compared with RUNX1-RUNX1T1 + group, the patients with CBFβ-MYH11+ showed higher age, peripheral WBC level, initial induced complete remission (CR) rate, more commonly carried chromosomal abnormalities such as +22, and lower deletion ratio of sex chromosome (-X or -Y) (P<0.05). In AML patients with CBFβ-MYH11+, the most common mutation was NRAS , followed by KIT, KRAS , and FLT3-TKD . Compared with RUNX1-RUNX1T1+ group, NRAS and FLT3-TKD were more frequently mutated in patients with CBFβ-MYH11+ (51.6% vs 18.7%, 17.7% vs 3.8%) (P<0.05).
CONCLUSION
The genomic landscape and clinical characteristics of AML patients with CBFβ-MYH11+ are different from patients with RUNX1-RUNX1T1 +.
Humans
;
Genomics
;
Leukemia, Myeloid, Acute/genetics*
;
Myosin Heavy Chains


Result Analysis
Print
Save
E-mail