1.Preparation and in vitro evaluation of platelet membrane biomimetic liposomes loaded with vincristine sulfate
Jing XIAO ; Xunyi YOU ; Along ZHANG ; Rui ZHONG ; Jiaxin LIU ; Ye CAO ; Hong WANG
Chinese Journal of Blood Transfusion 2025;38(5):652-659
Objective: To prepare platelet membrane biomimetic liposomes loaded with vincristine sulfate (VCR) for targeted delivery to tumor. Methods: Vincristine sulfate liposomes (LIPO) were prepared using the pH-gradient method, followed by the fusion of platelet membranes and subsequent drug loading to obtain platelet membrane biomimetic liposomes (PLM-LIPO). The particle size, polydispersity index (PDI), Zeta potential, and drug encapsulation efficiency (EE%) of both liposomes were characterized. The tumor-targeting capability was evaluated through in vitro cellular experiments and in vivo biodistribution studies. Results: The optimal preparation conditions for LIPO were determined as follows: DPPC-to-cholesterol molar ratio of 1∶1, internal aqueous phase of 0.3 M pH 4.0 citrate buffer, external aqueous phase of 1 M Na
HPO
solution, drug-to-lipid ratio of 1∶10, drug loading temperature of 60℃, and loading time of 10 minutes. The LIPO exhibited a mean particle size of (147.3±2.24) nm, PDI of 0.078±0.014, Zeta potential of (-3.54±0.75) mV, and EE% of 91.37±0.47. For PLM-LIPO, prepared via membrane fusion followed by drug loading, the mean particle size was (185.3±3.61) nm, PDI was 0.075±0.022, Zeta potential was (-18.91±1.54) mV, and EE% was 63.36±2.45. In the CD62P validation experiment, the fluorescence intensity of PLM-LIPO was five times higher than that of LIPO. In vitro cellular uptake experiments revealed that PLM-LIPO showed 1.3-fold and 1.2-fold higher uptake rates compared to LIPO at 6 h and 12 h, respectively. In vivo experiments demonstrated that 1h after administration, the accumulation of PLM-LIPO at tumor sites was 4-fold higher than that of LIPO and 6-7 times higher than that in healthy mice. Conclusion: The platelet membrane biomimetic liposomes loaded with vincristine sulfate were successfully developed. Both cellular uptake and tissue distribution studies confirmed the PLM-LIPO enhanced tumor-targeting capability.
2.Effects of different exercise interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats
Shujuan HU ; Ping CHENG ; Xiao ZHANG ; Yiting DING ; Xuan LIU ; Rui PU ; Xianwang WANG
Chinese Journal of Tissue Engineering Research 2025;29(2):269-278
BACKGROUND:Carboxylesterase 1 and inflammatory factors play a crucial role in regulating lipid metabolism and glucose homeostasis.However,the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats remain to be revealed. OBJECTIVE:To investigate the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats. METHODS:Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into normal control group(n=12)and modeling group(n=20)after 1 week of adaptive feeding.Rat models of type 2 diabetes mellitus were prepared by high-fat diet and single injection of streptozotocin.After successful modeling,the rats were randomly divided into diabetic control group(n=6),moderate-intensity exercise group(n=6)and high-intensity intermittent exercise group(n=6).The latter two groups were subjected to treadmill training at corresponding intensities,once a day,50 minutes each,and 5 days per week.Exercise intervention in each group was carried out for 6 weeks.After the intervention,ELISA was used to detect blood glucose and blood lipids of rats.The morphological changes of skeletal muscle were observed by hematoxylin-eosin staining.The mRNA expression levels of carboxylesterase 1 and inflammatory cytokines were detected by real-time quantitative PCR.The protein expression levels of carboxylesterase 1 and inflammatory cytokines were detected by western blot and immunofluorescence. RESULTS AND CONCLUSION:Compared with the normal control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,insulin resistance index in the diabetic control group were significantly increased(P<0.01),insulin activity was decreased(P<0.05),and the mRNA and protein levels of carboxylesterase 1,never in mitosis gene A related kinase 7(NEK7)and interleukin 18 in skeletal muscle tissue were upregulated(P<0.05).Compared with the diabetic control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,and insulin resistance index in the moderate-intensity exercise group and high-intensity intermittent exercise group were down-regulated(P<0.05),and insulin activity was increased(P<0.05).Moreover,compared with the diabetic control group,the mRNA level of NEK7 and the protein levels of carboxylesterase 1,NEK7 and interleukin 18 in skeletal muscle were decreased in the moderate-intensity exercise group(P<0.05),while the mRNA levels of carboxylesterase 1,NEK7,NOD-like receptor heat protein domain associated protein 3 and interleukin 18 and the protein levels of carboxylesterase 1 and interleukin 18 in skeletal muscle were downregulated in the high-intensity intermittent exercise group(P<0.05).Hematoxylin-eosin staining showed that compared with the diabetic control group,the cavities of myofibers in the moderate-intensity exercise group became smaller,the number of internal cavities was reduced,and the cellular structure tended to be more intact;the myocytes of rats in the high-intensity intermittent exercise group were loosely arranged,with irregular tissue shape and increased cavities in myofibers.To conclude,both moderate-intensity exercise and high-intensity intermittent exercise can reduce blood glucose,lipid,insulin resistance and carboxylesterase 1 levels in type 2 diabetic rats.Moderate-intensity exercise can significantly reduce the expression level of NEK7 protein in skeletal muscle,while high-intensity intermittent exercise can significantly reduce the expression level of interleukin 18 protein in skeletal muscle.In addition,the level of carboxylesterase 1 is closely related to the levels of NEK7 and interleukin 18.
3.The Role and Mechanism of Aerobic Exercise in Enhancing Insulin Sensitivity by Reducing Circulating Glutamate
Xiao-Rui XING ; Qin SUN ; Huan-Yu WANG ; Ruo-Bing FAN ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1373-1385
ObjectiveTo explore the role and potential mechanism of circulating glutamate in enhancing insulin sensitivity by aerobic exercise. This research may provide a novel strategy for preventing metabolic diseases through precise exercise interventions. MethodsTo investigate the effects of elevated circulating glutamate on insulin sensitivity and its potential mechanisms, 18 male C57BL/6 mice aged 6 to 8 weeks were randomly divided into 3 groups: a control group (C), a group receiving 500 mg/kg glutamate supplementation (M), and a group receiving 1 000 mg/kg glutamate supplementation (H). The intervention lasted for 12 weeks, with treatments administered 6 d per week. Following the intervention, an insulin tolerance test (ITT) and a glucose tolerance test (GTT) were conducted. Circulating glutamate levels were measured using a commercial kit, and the activity of the skeletal muscle InsR/IRS1/PI3K/AKT signaling pathway was analyzed via Western blot. To further investigate the role of circulating glutamate in enhancing insulin sensitivity through aerobic exercise, 30 male C57BL/6 mice were randomly assigned to 3 groups: a control group (CS), an exercise intervention group (ES), and an exercise combined with glutamate supplementation group (EG). The ES group underwent treadmill-based aerobic exercise, while the EG group received glutamate supplementation at a dosage of 1 000 mg/kg in addition to aerobic exercise. The intervention lasted for 10 weeks, with sessions occurring 6 d per week, and the same procedures were followed afterward. To further elucidate the mechanism by which glutamate modulates the InsR/IRS1/PI3K/AKT signaling pathway, C2C12 myotubes were initially subjected to graded glutamate treatment (0, 0.5, 1, 3, 5, 10 mmol/L) to determine the optimal concentration for cellular intervention. Subsequently, the cells were divided into 3 groups: a control group (C), a glutamate intervention group (G), and a glutamate combined with MK801 (an NMDA receptor antagonist) intervention group (GK). The G group was treated with 5 mmol/L glutamate, while the GK group received 50 μmol/L MK801 in addition to 5 mmol/L glutamate. After 24 h of intervention, the activity of the InsR/IRS1/PI3K/AKT signaling pathway was analyzed using Western blot. ResultsCompared to the mice in group C, the circulating glutamate levels, the area under curve (AUC) of ITT, and the AUC of GTT in the mice of group H were significantly increased. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle were significantly downregulated. Compared to the mice in group CS, the circulating glutamate levels, the AUC of ITT, and the AUC of GTT in the mice of group ES were significantly reduced. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle of group ES mice were significantly upregulated. There were no significant changes observed in the mice of group EG. Compared to the cells in group 0 mmol/L, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in cells of group 5 mmol/L were significantly downregulated. Compared to the cells in group C, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in the cells of group G were significantly downregulated. No significant changes were observed in the cells of group GK. ConclusionLong-term aerobic exercise can improve insulin sensitivity by lowering circulating levels of glutamate. This effect may be associated with the upregulation of the InsR/IRS1/AKT signaling pathway activity in skeletal muscle. Furthermore, glutamate can weaken the activity of the InsR/IRS1/PI3K/AKT signaling pathway in skeletal muscle, potentially by binding to NMDAR expressed in skeletal muscle.
4.Reducing language barriers, promoting information absorption, and communication using fanyi
Difei WANG ; Guannan CHEN ; Lin LI ; Shaodi WEN ; Zijing XIE ; Xiao LUO ; Li ZHAN ; Shuangbin XU ; Junrui LI ; Rui WANG ; Qianwen WANG ; Guangchuang YU
Chinese Medical Journal 2024;137(16):1950-1956
Interpreting genes of interest is essential for identifying molecular mechanisms, but acquiring such information typically involves tedious manual retrieval. To streamline this process, the fanyi package offers tools to retrieve gene information from sources like National Center for Biotechnology Information (NCBI), significantly enhancing accessibility. Additionally, understanding the latest research advancements and sharing achievements are crucial for junior researchers. However, language barriers often restrict knowledge absorption and career development. To address these challenges, we developed the fanyi package, which leverages artificial intelligence (AI)-driven online translation services to accurately translate among multiple languages. This dual functionality allows researchers to quickly capture and comprehend information, promotes a multilingual environment, and fosters innovation in academic community. Meanwhile, the translation functions are versatile and applicable beyond biomedicine research to other domains as well. The fanyi package is freely available at https://github.com/YuLab-SMU/fanyi.
5.Telmisartan promotes insulin secretion in rats through direct inhibition of Kv2.1 channel
Tao LIU ; Xiao-Qin CHEN ; Rui-Wang GUO ; Li-Juan CUI ; Shi-Wei LIU
Chinese Pharmacological Bulletin 2024;40(5):893-898
Aim To investigate the signaling pathways related to telmisartan-induced insulinotropic effect in rats.Methods(1)Islets and cells were isolated from Wistar rats.Islets were treated with different drugs,then supernatant liquid was collected for insulin secretion.The changes in intracellular Ca2+([Ca2+]i)concentrations of β-cells and the effects on ion channel were observed using calcium imaging tech-nology and patch-clamp technology respectively.(2)CHO-Kv2.1 cell line was constructed with lentivirus vector overexpressing Kv2.1 channel,then patch-clamp experiment was performed on CHO-Kv2.1 cells to observe the direct effect of telmisartan on Kv2.1 channel.Results Different from telmisartan,valsar-tan and irbesartan under high glucose condition did not exhibit insulinotropic effect,elevation of[Ca2+]i lev-els,and inhibition of Kv channels in[3 cells.GW9662,a peroxisome proliferator-activated receptorγ(PPARγ)blocker,did not influence the effects of telmisartan on insulin secretion,[Ca2+]i level and Kv channel.CHO cells had no endogenous outward potas-sium currents,while Kv2.1 channel current and its concentration dependent suppression by telmisartan were both detected on CHO-Kv2.1 cells.Conclusion Neither AT-1 receptors nor PPARγ is involved in telmisartan-induced insulinotropic effect,and the effect of telmisartan is partly due to the direct inhibition of kv2.1 channel.
6.Dynamic changes of neuronal cells at different time points following cerebral ischemia-reperfusion injury in rats
Xu-Huan ZOU ; Rui LAN ; Xue-Qin FU ; Wei-Wei WANG ; Man-Man WANG ; Chen TANG ; Shuang LIU ; Hong-Yu LI ; Xiao-Ming SHEN
Chinese Pharmacological Bulletin 2024;40(6):1056-1066
Aim To investigate the dynamic changes of neuronal cells at different time points following acute cerebral ischemia-reperfusion injury by establishing a model of brain ischemia-reperfusion injury.Methods Thirty male Sprague-Dawley(SD)rats were ran-domly divided into six groups:sham group and cere-bral ischemia-reperfusion injury(IR)groups at differ-ent time points.Focal cerebral ischemia-reperfusion injury model was established using the middle cerebral artery occlusion(MCAO)technique.The Longa sco-ring method was used to assess neurobehavioral scores in rats.After successful model preparation,routine paraffin sections were made,and TUNEL staining and immunohistochemistry staining with NeuN antibody were performed to observe cell apoptosis and neuronal cell survival,respectively.Immunohistochemistry stai-ning was also performed to investigate the changes in glial fibrillary acidic protein(GFAP)as a marker for astrocytes,ionized calcium-binding adapter molecule 1(IBA-1)as a marker for microglia,and CD31 as a marker for endothelial cells at different time points.Results No significant changes were observed in neu-ronal cells of the sham group at different time points.In the cerebral ischemia-reperfusion injury groups,cell apoptosis was activated at IR3h and increased in quan-tity with morphological damage as time progressed.Ne-uN+neurons showed signs of ischemic injury after IR3h,with abnormal cell morphology.From 12 h,Ne-uN+neurons decreased in a time-dependent manner and reached their peak severity at 24 h.GFAP+astro-cytes decreased significantly after IR3h,while poorly labeled GFAP+astrocytes increased at IR 6 h and al-most disappeared in the infarcted area at 24 h and 48 h.The number of IBA-1+microglia-positive cells de-creased at IR3h,and their volume increased at IR6h.Microglial cell death was observed in the infarcted area at IR12h.CD31+endothelial cells around the infarc-ted cortex and striatum increased significantly after IR3h and persisted until 48 h.Conclusions After cerebral ischemia-reperfusion injury,the number of ap-optotic cells increases with the prolongation of time,and NeuN+neurons exhibit the most severe damage at 24 h.GFAP+astrocytes and microglial cells gradually die over time.The number of CD31+endothelial cells increases significantly around the infarcted cortex and striatum after 3 h of reperfusion and persists until 48 h.
7.Mechanism of saikosaponin D enhancing temozolomide sensitivity in glioma cells via inducing endoplasmic reticulum stress
Gui-Mei LIU ; Rui ZHENG ; Xiao-Bin LIU ; Yong-Xian LIU ; Ya-Ping WANG ; Yu-Fu ZHANG ; Jing ZHANG ; Xiao-Yan JIN ; Yu-Si LIU
Chinese Pharmacological Bulletin 2024;40(6):1105-1114
Aim To investigate the synergistic sensiti-zation effect of saikosaponin D(SSD)combined with temozolomide(TMZ)on glioblastoma cells(GBM)and its molecular mechanism.Methods The sensitiv-ity of RG-2,U251 and LN-428 GBM cell lines to SSD and TMZ was analyzed by CCK-8 method combined with HE staining,and the optimal compatible concen-tration was screened.The effect of HE staining com-bined with Hoechst fluorescence staining on the prolif-eration of GBM cell line was detected by clonal forma-tion experiment.The autophagosome formation of GBM cells was observed by monodansylcadaverine(MDC)staining.The expression and distribution of endoplas-mic reticulum stress-related factors and apoptosis and autophagy proteins were detected by Western blot and ICC.Results The sensitivity order of GBM cells to TMZ was RG-2>U251>LN-428.The results of com-bined administration showed the synergistic inhibitory effect of SSD combined with TMZ on proliferation of GBM cell lines,which was confirmed by cell cloning formation experiment.Compared with the TMZ group,Hoechst fluorescence staining showed a significant in-crease in the number of nuclear bright staining in the combined administration group.MDC fluorescence staining showed that there were more dense green parti-cles in the cytoplasm of SSD/TMZ plus group than that of TMZ group.Western blot results showed that com-pared with TMZ group,the expression of ER stress markers GRP78,CHOP,p-PERK and ATF6 signifi-cantly increased in SSD/TMZ group(P<0.05).The expressions of apoptosis proteins caspase-12,caspase-9,caspase-3,cleaved caspase-3,Bax and autophagy proteins LC3 and Beclin-1 significantly increased(P<0.05),which were verified by ICC test.Conclusions SSD can cooperate with TMZ to inhibit the prolifera-tion of GBM cells and induce apoptosis and autophagy,and enhance the sensitivity of GBM cells to TMZ by ac-tivating endoplasmic reticulum stress pathway.
8.Carnosine attenuates OGD/R damage to BV2 cells by inhibiting ROS/NLRP3/GSDMD-mediated pyroptosis
Rui-Li RAN ; Yu-Tong WANG ; Jun-Qiu SONG ; Jiang BIAN ; De-Wei WANG ; Xiao-Han JIANG ; Fu-Lin YOU ; Jing YANG
Chinese Pharmacological Bulletin 2024;40(11):2150-2158
Aim To investigate the protective effect of carnosine on BV2 cell damage induced by oxygen-glu-cose deprivation/reperfusion(OGD/R)and its role in mediating pyrodeath through the ROS/NLRP3/GSDMD pathway.Methods BV2 cells were randomly divided into the control group(Con),model group(OGD/R),carnosine group(OGD/R+CAR),inhibitor group(OGD/R+MCC950),and carnosine+inhibitor group(OGD/R+CAR+MCC950).The cell survival rate was detected by MTT assay.The release rate of lactate dehydrogenase(LDH)in cell supernatant was detected by microenzyme labeling method.Cell damage was as-sessed using Hoechst 33342/SYTOX Green staining.ROS levels in cells were detected by DCFH-DA.The nucleation level of NF-κB p65 was observed by immu-nofluorescence.The protein expression levels of NLRP3,ASC,cleaved caspase-1,and GSDMD-N were detected by Western blot.The levels of IL-1 β and IL-18 in the supernatant were detected by ELISA.Results Com-pared with Con group,the survival rate of cells in the OGD/R group was significantly reduced,LDH release was significantly raised,cell morphology was damaged,and the positive rate of SYTOX Green was significantly elevated with ROS level in cells.The fluorescence in-tensity of NF-κB p65 in the nucleus increased,and the protein expression levels of NLRP3,ASC,cleaved caspase-1,GSDMD-N increased significantly,and the levels of IL-1 β and IL-18 in the cell superserum in-creased significantly.Compared with the OGD/R group,the survival rate of cells in other groups in-creased significantly,the LDH release rate significantly decreased,and the cell damage was improved to a cer-tain extent.The positive rate of SYTOX Green and ROS production in cells significantly decreased,and the fluorescence intensity of NF-κB p65 in nucleus markedly decreased.The expression levels of related proteins and the levels of IL-1 β and IL-18 in cell super-natant significantly decreased.Conclusion Carnosine can protect BV2 cells from OGD/R-induced damage by inhibiting oxidative stress and NF-κB activation,then inhibiting NLRP3/GSDMD signaling pathway.
9.Injurious effects of neutrophil extracellular trapping network on kidney of diabetic mice and its mechanisms
Wei-Hao CHEN ; Xiao-Jun REN ; Xin-Yue CHANG ; Guan-Rui LI ; Yan-Hong WANG
Chinese Pharmacological Bulletin 2024;40(12):2262-2269
Aim To investigate the promotional effects of neutrophil extracellular traps(NETs)on renal tissue damage and intestinal flora disruption induced by dia-betic kidney disease(DKD)and the potential mecha-nisms.Methods C57BL/6 mice were divided into:control group(NC),DNase Ⅰ control group(DNase Ⅰ)diabetic nephropathy group(DKD),and DNase Ⅰ treated group(DKD+DNase Ⅰ).The pathological changes of mouse kidney were observed by PAS,MAS-SON,and HE staining.The expression and distribu-tion of the relevant proteins of NETs in renal tissue of the mice in each group were observed by immunohisto-chemistry.The expression and distribution of coke-death-related proteins in the kidney tissues of mice in each group were observed by immunohistochemistry.The protein expression of NETs-related indexes,focal death-related indexes and NF-κB signaling pathway-re-lated indexes in kidney tissue of mice in each group were detected by immunoblotting.Results The ex-pression of indicators related to NETs was elevated in the DKD group,and their expression decreased after degradation of NETs by DNase Ⅰ(P<0.01).Patho-logical staining results showed that the kidneys of DKD mice were structurally abnormal,and the structure was improved after degradation of NETs by DNase Ⅰ.The results of immunohistochemical staining and immunob-lotting showed that the expression of pyroptosis-related proteins in kidney tissues of mice in the DKD group was elevated compared with that in the control group(P<0.01).NF-κB-related signaling pathway protein expression profile expression rose,and its expression decreased after degradation of NETs by DNase Ⅰ(P<0.01)Conclusions NETs are generated in diabetic nephropathy and promote the onset of renal focal death and activation of the NF-κB signaling pathway,thereby exacerbating diabetes-induced kidney injury.
10.Analysis of the whole genome characteristics of influenza A (H3N2) virus in Wuxi city from 2022 to 2023
Yong XU ; Rui WANG ; Chun′an YU ; Jing BAO ; Qi ZHOU ; Yong XIAO ; Hong LI ; Xiaoluan SHI ; Guangyuan MA
Chinese Journal of Experimental and Clinical Virology 2024;38(4):454-463
Objective:To understand the whole genome and genetic evolution characteristics of the first epidemic influenza A (H3N2) viruses in Wuxi from 2022-2023.Methods:Real time fluorescence quantitative RT-PCR method was used to perform typing on respiratory samples of influenza cases. Virus isolation was performed on samples with positive nucleic acid of subtype A H3N2 influenza virus detected. After cell culture, nucleic acid was extracted from strains with red blood cell agglutination test (HA) ≥ 1∶8, whole genome sequence was amplified, library was constructed, and computer sequencing was performed using MiSeq sequencer. Using NC_007366.1 as reference strain, the data were analyzed using CLC Genomics Workbench (Version 23) software. The phylogenetic tree was constructed using MEGA 7.0 software, and the N-glycosylation sites were predicted by NetNGlyc 1.0 Server software.Results:The nucleotide homology and amino acid homology among 35 strains of influenza A H3N2 virus from 2022 to 2023 were 96.4%-100% and 95.2%-100%, respectively. The 16 epidemic strains in 2022 belong to the 3C.2a1b.2a.1a evolutionary branch, while the 19 epidemic strains in 2023 belong to the 3C.2a1b.2a.2a.3a.1 evolutionary branch. There are 7 differences in the nucleotide sequence of the HA gene between the 2022 epidemic strain and the corresponding vaccine strain, sharing 15 mutation sites; There are 28 differences in the nucleotide sequence of the HA gene between the 2023 epidemic strain and the corresponding vaccine strain, sharing 17 mutation sites. The HA genes of 35 epidemic strains all lack N-glycosylation site 61: NSS, while in 2023, the HA genes of 19 epidemic strains added N-glycosylation site 110: NSS.Conclusions:The HA and NA genes of influenza A H3N2 virus in 2022 and 2023 belong to two evolutionary branches, respectively, and both show specific amino acid site changes compared to the corresponding vaccine strains. The antigen matching between the 2022 epidemic strain and the vaccine strain is relatively good, while there is a risk of low antigen matching between the 2023 epidemic strain and the vaccine strain.

Result Analysis
Print
Save
E-mail