1.Drug Delivery Systems for Pancreatic Cancers Treatment
Wan-Rui SHI ; Li-Gang CUI ; Xiao-Long LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1745-1756
Pancreatic cancers (PCs) is a common malignant tumor with poor prognosis in the digestive system. Its main treatment methods include surgery, radiotherapy, chemotherapy, and targeted therapy. The early diagnosis rate of hidden onset of PCs is low, and most patients have already lost the opportunity to undergo surgery when diagnosed with PCs. Chemotherapy is still the main treatment for advanced PCs, but the use of chemotherapy drugs in PCs can easily lead to drug resistance. The most significant feature that distinguishes PCs from other tumors is its rich and dense matrix, which not only hinders drug penetration but also impedes the infiltration of immune cells. The above reasons have led to a very low survival rate of PCs patients. Therefore, drug delivery systems are very important in the diagnosis and treatment of PCs. They can improve drug delivery, enhance biological barrier penetration, reduce side effects, and combine multiple treatment methods. Therefore, the treatment prospects of PCs are very broad. Currently, drug delivery systems widely applied in PCs primarily include nanodrug delivery systems, tumor microenvironment-targeted drug delivery system, immunotherapy drug delivery system, gene therapy drug delivery system, and combination therapy drug delivery system that synergize multiple therapeutic modalities. Emerging drug delivery systems (DDSs) have revolutionized PCs treatment by addressing these challenges through multiple mechanisms. Nanoformulations improve drug solubility, prolong circulation time, and reduce systemic toxicity via passive/active targeting. Smart DDSs responsive to PCs-specific stimuli enable extracellular matrix degradation, tumor-associated fibroblasts reprogramming, and vascular normalization to enhance drug accessibility. Last but not least, carrier systems loaded with myeloid-derived suppressor cell inhibitors or T cell activators can reverse immunosuppression and potentiate immunotherapy efficacy. Advanced platforms co-deliver chemotherapeutics with immunomodulators, gene-editing tools, or sonodynamic agents to achieve synergistic antitumor effects. These platforms aim to address critical challenges in PCs treatment, such as enhancing drug bioavailability, overcoming stromal barriers, reprogramming immunosuppressive niches, and achieving multi-mechanistic antitumor effects. This article provides a systematic summary and prospective analysis of the current development status, latest cutting-edge advances, opportunities, and challenges of the above-mentioned drug delivery systems in the field of PCs therapy.
2.Cold stimulation regulates lipid metabolism and the secretion of exosomes from subcutaneous adipose tissue in mice.
Shuo KE ; Li XU ; Rui-Xue SHI ; Jia-Qi WANG ; Le CUI ; Yuan JI ; Jing LI ; Xiao-Hong JIANG
Acta Physiologica Sinica 2025;77(2):231-240
Cold has been a long-term survival challenge in the evolutionary process of mammals. In response to cold stress, in addition to brown adipose tissue (BAT) dissipating energy as heat through glucose and lipid oxidation to maintain body temperature, cold stimulation can strongly activate thermogenesis and energy expenditure in beige fat cells, which are widely distributed in the subcutaneous layer. However, the effects of cold stimulation on other tissues and systemic lipid metabolism remain unclear. Our previous research indicated that, under cold stress, BAT not only produces heat but also secretes numerous exosomes to mediate BAT-liver crosstalk. Whether subcutaneous fat has a similar mechanism is still unknown. Therefore, this study aimed to investigate the alterations in lipid metabolism across various tissues under cold exposure and to explore whether subcutaneous fat regulates systemic glucose and lipid metabolism via exosomes, thereby elucidating the regulatory mechanisms of lipid metabolism homeostasis under physiological stress. RT-qPCR, Western blot, and H&E staining methods were used to investigate the physiological changes in lipid metabolism in the serum, liver, epididymal white adipose tissue, and subcutaneous fat of mice under cold stimulation. The results revealed that cold exposure significantly enhanced the thermogenic activity of subcutaneous adipose tissue and markedly increased exosome secretion. These exosomes were efficiently taken up by hepatocytes, where they profoundly influenced hepatic lipid metabolism, as evidenced by alterations in the expression levels of key genes involved in lipid synthesis and catabolism pathways. This study has unveiled a novel mechanism by which subcutaneous fat regulates lipid metabolism through exosome secretion under cold stimulation, providing new insights into the systemic regulatory role of beige adipocytes under cold stress and offering a theoretical basis for the development of new therapeutic strategies for obesity and metabolic diseases.
Animals
;
Lipid Metabolism/physiology*
;
Mice
;
Exosomes/metabolism*
;
Cold Temperature
;
Subcutaneous Fat/physiology*
;
Thermogenesis/physiology*
;
Adipose Tissue, Brown/metabolism*
;
Male
3.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
4.Effects of MTHFR and GGH gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate therapy in children with acute lymphoblastic leukemia.
Lin-Xiao TENG ; Qi AN ; Lei WANG ; Nan WANG ; Qing-Ling KONG ; Rui HAN ; Yuan WANG ; Lu LIU ; Yan WANG ; Shu-Mei XU ; Kun-Peng SHI ; Fang-Shan QIU ; Xi-Xi DU ; Jin-Rui SHI
Chinese Journal of Contemporary Pediatrics 2025;27(7):802-807
OBJECTIVES:
To investigate the effects of methylenetetrahydrofolate reductase (MTHFR) rs1801133 and γ-glutamyl hydrolase (GGH) rs11545078 gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate (MTX) therapy in children with acute lymphoblastic leukemia (ALL).
METHODS:
Children with ALL treated at the Xuzhou Children's Hospital of Xuzhou Medical University from January 2021 to April 2024 were selected for this study. Genotypes of MTHFR rs1801133 and GGH rs11545078 were determined using multiplex polymerase chain reaction. MTX plasma concentrations were measured by enzyme-multiplied immunoassay technique, and toxicity was graded according to the Common Terminology Criteria for Adverse Events version 5.0. The relationships between MTHFR rs1801133 and GGH rs11545078 genotypes and both MTX plasma concentrations and associated toxicities were analyzed.
RESULTS:
In the low-risk ALL group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 72 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05), and the GGH rs11545078 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with the occurrence of reduced hemoglobin (P<0.05), and the GGH rs11545078 genotype was associated with the occurrence of thrombocytopenia (P<0.05).
CONCLUSIONS
Detection of MTHFR rs1801133 and GGH rs11545078 genotypes can be used to predict increased MTX plasma concentrations and the occurrence of toxic reactions in high-dose MTX treatment of ALL, enabling timely interventions to enhance safety.
Humans
;
Methotrexate/toxicity*
;
Methylenetetrahydrofolate Reductase (NADPH2)/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood*
;
Male
;
Female
;
Child
;
Child, Preschool
;
gamma-Glutamyl Hydrolase/genetics*
;
Antimetabolites, Antineoplastic/adverse effects*
;
Infant
;
Polymorphism, Genetic
;
Adolescent
;
Genotype
;
Polymorphism, Single Nucleotide
5.Liang-Ge-San Decoction Ameliorates Acute Respiratory Distress Syndrome via Suppressing p38MAPK-NF-κ B Signaling Pathway.
Quan LI ; Juan CHEN ; Meng-Meng WANG ; Li-Ping CAO ; Wei ZHANG ; Zhi-Zhou YANG ; Yi REN ; Jing FENG ; Xiao-Qin HAN ; Shi-Nan NIE ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(7):613-623
OBJECTIVE:
To explore the potential effects and mechanisms of Liang-Ge-San (LGS) for the treatment of acute respiratory distress syndrome (ARDS) through network pharmacology analysis and to verify LGS activity through biological experiments.
METHODS:
The key ingredients of LGS and related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. ARDS-related targets were selected from GeneCards and DisGeNET databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed using the Metascape Database. Molecular docking analysis was used to confirm the binding affinity of the core compounds with key therapeutic targets. Finally, the effects of LGS on key signaling pathways and biological processes were determined by in vitro and in vivo experiments.
RESULTS:
A total of LGS-related targets and 496 ARDS-related targets were obtained from the databases. Network pharmacological analysis suggested that LGS could treat ARDS based on the following information: LGS ingredients luteolin, wogonin, and baicalein may be potential candidate agents. Mitogen-activated protein kinase 14 (MAPK14), recombinant V-Rel reticuloendotheliosis viral oncogene homolog A (RELA), and tumor necrosis factor alpha (TNF-α) may be potential therapeutic targets. Reactive oxygen species metabolic process and the apoptotic signaling pathway were the main biological processes. The p38MAPK/NF-κ B signaling pathway might be the key signaling pathway activated by LGS against ARDS. Moreover, molecular docking demonstrated that luteolin, wogonin, and baicalein had a good binding affinity with MAPK14, RELA, and TNF α. In vitro experiments, LGS inhibited the expression and entry of p38 and p65 into the nucleation in human bronchial epithelial cells (HBE) cells induced by LPS, inhibited the inflammatory response and oxidative stress response, and inhibited HBE cell apoptosis (P<0.05 or P<0.01). In vivo experiments, LGS improved lung injury caused by ligation and puncture, reduced inflammatory responses, and inhibited the activation of p38MAPK and p65 (P<0.05 or P<0.01).
CONCLUSION
LGS could reduce reactive oxygen species and inflammatory cytokine production by inhibiting p38MAPK/NF-κ B signaling pathway, thus reducing apoptosis and attenuating ARDS.
Drugs, Chinese Herbal/pharmacology*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Animals
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Humans
;
Male
;
Network Pharmacology
;
Apoptosis/drug effects*
;
Mice
6.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
7.Blades and barriers: Oral vaccines for conquering cancers and warding off infectious diseases.
Kun YANG ; Jinhua LIU ; Yi ZHAO ; Haiting XU ; Menghang ZU ; Baoyi LI ; Xiaoxiao SHI ; Rui L REIS ; Subhas C KUNDU ; Bo XIAO
Acta Pharmaceutica Sinica B 2025;15(8):3925-3950
Global public health faces substantial challenges from malignant tumors and infectious diseases. Vaccination provides an approach for treating and preventing these diseases. Oral vaccinations are particularly advantageous in disease treatment and prevention due to their non-invasive nature, high patient compliance, convenience, cost-effectiveness, and capacity to stimulate comprehensive and adaptive immune responses. However, the overwhelming majority of oral vaccines remain in experimental development, struggling with clinical and commercial translation due to their suboptimal efficacy. Thus, enhancing scientists' understanding of the interaction between vaccines and gastrointestinal immune system, creating antigen delivery systems suitable for the gut mucosal environment, developing more potent antigenic epitopes, and using personalized combination therapies are critical for advancing the next generation of oral vaccines. This article explores the fundamental principles and applications of current oral anti-tumor and anti-infective vaccines and discusses considerations necessary for designing future oral vaccines.
8.The Impacts of Climate Change on the Environment and Human Health in China: A Call for more Ambitious Action.
Shi Lu TONG ; Yu WANG ; Yong Long LU ; Cun de XIAO ; Qi Yong LIU ; Qi ZHAO ; Cun Rui HUANG ; Jia Yu XU ; Ning KANG ; Tong ZHU ; Dahe QIN ; Ying XU ; Buda SU ; Xiao Ming SHI
Biomedical and Environmental Sciences 2025;38(2):127-143
As global greenhouse gases continue rising, the urgency of more ambitious action is clearer than ever before. China is the world's biggest emitter of greenhouse gases and one of the countries affected most by climate change. The evidence about the impacts of climate change on the environment and human health may encourage China to take more decisive action to mitigate greenhouse gas emissions and adapt to climate impacts. This article aimed to review the evidence of environmental damages and health risks posed by climate change and to provide a new science-based perspective for the delivery of sustainable development goals. Over recent decades, China has experienced a strong warming pattern with a growing frequency of extreme weather events, and the impacts of climate change on China's environment and human health have been consistently observed, with increasing O 3 air pollution, decreases in water resources and availability, land degradation, and increased risks for both communicable and non-communicable diseases. Therefore, China's climate policy should target the key factors driving climate change and scale up strategic measures to curb carbon emissions and adapt to inevitable increasing climate impacts. It provides new insights for not only China but also other countries, particularly developing and emerging economies, to ensure climate and environmental sustainability whilst pursuing economic growth.
Climate Change
;
China
;
Humans
;
Greenhouse Gases
;
Air Pollution
;
Sustainable Development
;
Environment
9.A Health Economic Evaluation of an Artificial Intelligence-assisted Prescription Review System in a Real-world Setting in China.
Di WU ; Ying Peng QIU ; Li Wei SHI ; Ke Jun LIU ; Xue Qing TIAN ; Ping REN ; Mao YOU ; Jun Rui PEI ; Wen Qi FU ; Yue XIAO
Biomedical and Environmental Sciences 2025;38(3):385-388
10.Exploring the Efficacy of BMSC Transplantation via Various Pathways for Treating Cholestatic Liver Fibrosis in Mice.
Jun Jie REN ; Zi Xu LI ; Xin Rui SHI ; Ting Ting LYU ; Xiao Nan LI ; Min GE ; Qi Zhi SHUAI ; Ting Juan HUANG
Biomedical and Environmental Sciences 2025;38(4):447-458
OBJECTIVE:
To compare the therapeutic efficacy of portal and tail vein transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) against cholestatic liver fibrosis in mice.
METHODS:
BMSCs were isolated and co-cultured with starvation-activated hepatic stellate cells (HSCs). HSC activation markers were identified using immunofluorescence and qRT-PCR. BMSCs were injected into the liver tissues of bile duct ligation (BDL) mice via the tail and portal veins. Histomorphology, liver function, inflammatory cytokines, and the expression of key proteins were all determined in the liver tissues.
RESULTS:
BMSCs inhibited HSC activation by reducing α-SMA and collagen I expression. Compared to tail vein injection, DIL-labeled BMSCs injected through the portal vein maintained a high homing rate in the liver. Moreover, BMSCs transplanted through the portal vein resulted in greater improvement in liver color, hardness, and gallbladder size than did those transplanted through the tail vein. Furthermore, BMSCs injected by portal vein, but not tail vein, markedly ameliorated liver function, reduced the secretion of inflammatory cytokines, including TNF-α, IL-6, and IL-1β, and decreased α-SMA + hepatic stellate cell (HSC) activation and collagen fiber formation.
CONCLUSION
The therapeutic effect of BMSCs on cholestatic liver fibrosis in mice via portal vein transplantation was superior to that of tail vein transplantation. This comparative study provides reference information for further BMSC studies focused on clinical cholestatic liver diseases.
Animals
;
Mice
;
Mesenchymal Stem Cell Transplantation
;
Liver Cirrhosis/etiology*
;
Male
;
Cholestasis/therapy*
;
Mice, Inbred C57BL
;
Hepatic Stellate Cells
;
Mesenchymal Stem Cells

Result Analysis
Print
Save
E-mail