1.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
2.Study on protective effect of arbutin in yam on acute lung injury and its metabolic regulation mechanism.
Kai-Li YE ; Meng-Nan ZENG ; Feng-Xiao HAO ; Peng-Li GUO ; Yu-Han ZHANG ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(15):4100-4109
This study investigated the protective effect of arbutin(Arb) in yam on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in a mouse model and revealed its possible mechanism of action by metabolomics technology, providing a theoretical basis for clinical treatment of ALI. SPF BALB/c mice were randomly divided into normal control group, model group, resveratrol(Rv)-positive control group, Arb low-dose(15 mg·kg~(-1)) group, and Arb high-dose(30 mg·kg~(-1)) group. The LPS-induced ALI model was established in all groups except the normal control group. Hematoxylin-eosin(HE) staining, TUNEL staining, and WBP whole-body non-invasive pulmonary function testing were used to evaluate the degree of lung tissue damage and lung function changes. Enzyme-linked immunosorbent assay(ELISA) was used to detect the level of inflammatory factors in lung tissue. Flow cytometry was used to analyze the M1/M2 polarization status of macrophages in lung tissue. Western blot was used to detect the expression levels of the TLR4 signaling pathway and related apoptotic proteins. Liquid chromatograph-mass spectrometer(LC-MS) metabolomics was used to analyze the changes in serum metabolic profile after Arb intervention. The results showed that Arb pretreatment significantly alleviated LPS-induced lung tissue injury, improved lung function, reduced the levels of pro-inflammatory factors(IL-6, TNF-α, IL-18, and IL-1β), and regulated the polarization status of M1/M2 macrophages. In addition, Arb inhibited the activation of the TLR4 signaling pathway, reduced the expression of pro-apoptotic proteins such as Bax, caspase-3, and caspase-9, up-regulated the level of Bcl-2 protein, and inhibited apoptosis of lung cells. Metabolomic analysis showed that Arb significantly improved LPS-induced metabolic abnormalities, mainly involving key pathways such as galactose metabolism, phenylalanine metabolism, and lipid metabolism. In summary, Arb can significantly reduce LPS-induced ALI by regulating the release of inflammatory factors, inhibiting the activation of the TLR4 signaling pathway, improving metabolic disorders, and regulating macrophage polarization, indicating that Arb has potential clinical application value.
Animals
;
Acute Lung Injury/chemically induced*
;
Mice
;
Mice, Inbred BALB C
;
Arbutin/administration & dosage*
;
Male
;
Toll-Like Receptor 4/immunology*
;
Apoptosis/drug effects*
;
Lung/metabolism*
;
Signal Transduction/drug effects*
;
Protective Agents/administration & dosage*
;
Humans
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
3.Development of intelligent equipment for rapid microbial detection of Atractylodis Macrocephalae Rhizoma decoction pieces based on measurement technology for traditional Chinese medicine manufacturing.
Yang LIU ; Wu-Zhen QI ; Yu-Tong WU ; Shan-Xi ZHU ; Xiao-Jun ZHAO ; Qia-Tong XIE ; Yu-Feng GUO ; Jing ZHAO ; Nan LI ; Shi-Jun WANG ; Qi-Hui SUN ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(16):4610-4618
Microbial detection and control of traditional Chinese medicine(TCM) decoction pieces are crucial for the quality control of TCM preparations. It is also a key area of research in the measurement technology and equipment development for TCM manufacturing. Guided by TCM manufacturing measurement methodologies, this study presented a design of a novel portable microbial detection device, using Atractylodis Macrocephalae Rhizoma decoction pieces as a demonstration. Immunomagnetic separation technology was employed for specific isolation and labeling of target microorganisms. Enzymatic signal amplification was utilized to convert weak biological signals into colorimetric signals, constructing an optical biosensor. A self-developed smartphone APP was further applied to analyze the colorimetric signals and quantify target concentrations. A portable and automated detection system based on Arduino microcontroller was developed to automatically perform target microbial separation/extraction, as well as mimetic enzyme labeling and catalytic reactions. The developed equipment specifically focuses on the rapid and quantitative microbial analysis of TCM active pharmaceutical ingredients, intermediates in TCM manufacturing, and final TCM products. Experimental results demonstrate that the equipment could detect Salmonella in samples within 2 h, with a detection limit as low as 5.1 × 10~3 CFU·mL~(-1). The equipment enables the rapid detection of microorganisms in TCM decoction pieces, providing a potential technical solution for on-site rapid screening of microbial contamination indicators in TCM. It has broad application prospects in measurement technology for TCM manufacturing and offers strong technical support for the modernization, industrialization, and intelligent development of TCM.
Drugs, Chinese Herbal/analysis*
;
Atractylodes/microbiology*
;
Rhizome/microbiology*
;
Biosensing Techniques/methods*
;
Medicine, Chinese Traditional
;
Colorimetry/instrumentation*
;
Quality Control
4.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
5.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
6.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
7.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
8.Molecular Characterization of New Recombinant Human Adenoviruses Detected in Children with Acute Respiratory Tract Infections in Beijing, China, 2022-2023.
Yi Nan GUO ; Ri DE ; Fang Ming WANG ; Zhen Zhi HAN ; Li Ying LIU ; Yu SUN ; Yao YAO ; Xiao Lin MA ; Shuang LIU ; Chunmei ZHU ; Dong QU ; Lin Qing ZHAO
Biomedical and Environmental Sciences 2025;38(9):1071-1081
OBJECTIVE:
Recombination events are common and serve as the primary driving force of diverse human adenovirus (HAdV), particularly in children with acute respiratory tract infections (ARIs). Therefore, continual monitoring of these events is essential for effective viral surveillance and control.
METHODS:
Respiratory specimens were collected from children with ARIs between January 2022 and December 2023. The penton base, hexon, and fiber genes were amplified from HAdV-positive specimens and sequenced to determine the virus type. In cases with inconsistent typing results, genes were cloned into the pGEM-T vector to detect recombination events. Metagenomic next-generation sequencing (mNGS) was performed to characterize the recombinant HAdV genomes.
RESULTS:
Among 6,771 specimens, 277 (4.09%, 277/6,771) were positvie for HAdV, of which 157 (56.68%, 157/277) were successfully typed, with HAdV-B3 being the dominant type (91.08%, 143/157), and 14 (5.05%, 14/277) exhibited inconsistent typing results, six of which belonged to species B. The penton base genes of these six specimens were classified as HAdV-B7, whereas their hexon and fiber genes were classified as HAdV-B3, resulting in a recombinant genotype designated P7H3F3, which closely resembled HAdV-B114. Additionally, a partial gene encoding L1 52/55 kD was identified, which originated from HAdV-B16.
CONCLUSION
A novel recombinant, P7H3F3, was identified, containing sequences derived from HAdV-B3 and HAdV-B7, which is similar to HAdV-B114, along with additional sequences from HAdV-B16.
Humans
;
Adenoviruses, Human/isolation & purification*
;
Respiratory Tract Infections/epidemiology*
;
Child, Preschool
;
Child
;
Recombination, Genetic
;
Male
;
Beijing/epidemiology*
;
Infant
;
Female
;
Phylogeny
;
Adenovirus Infections, Human/epidemiology*
;
Acute Disease
;
Genome, Viral
9.Hepatitis C virus infection:surveillance report from China Healthcare-as-sociated Infection Surveillance System in 2020
Xi-Mao WEN ; Nan REN ; Fu-Qin LI ; Rong ZHAN ; Xu FANG ; Qing-Lan MENG ; Huai YANG ; Wei-Guang LI ; Ding LIU ; Feng-Ling GUO ; Shu-Ming XIANYU ; Xiao-Quan LAI ; Chong-Jie PANG ; Xun HUANG ; An-Hua WU
Chinese Journal of Infection Control 2024;23(1):1-8
Objective To investigate the infection status and changing trend of hepatitis C virus(HCV)infection in hospitalized patients in medical institutions,and provide reference for formulating HCV infection prevention and control strategies.Methods HCV infection surveillance results from cross-sectional survey data reported to China Healthcare-associated Infection(HAI)Surveillance System in 2020 were summarized and analyzed,HCV positive was serum anti-HCV positive or HCV RNA positive,survey result was compared with the survey results from 2003.Results In 2020,1 071 368 inpatients in 1 573 hospitals were surveyed,738 535 of whom underwent HCV test,4 014 patients were infected with HCV,with a detection rate of 68.93%and a HCV positive rate of 0.54%.The positive rate of HCV in male and female patients were 0.60%and 0.48%,respectively,with a statistically sig-nificant difference(x2=47.18,P<0.001).The HCV positive rate in the 50-<60 age group was the highest(0.76%),followed by the 40-<50 age group(0.71%).Difference among all age groups was statistically signifi-cant(x2=696.74,P<0.001).In 2003,91 113 inpatients were surveyed.35 145 of whom underwent HCV test,resulting in a detection rate of 38.57%;775 patients were infected with HCV,with a positive rate of 2.21%.In 2020,HCV positive rates in hospitals of different scales were 0.46%-0.63%,with the highest in hospital with bed numbers ranging 600-899.Patients'HCV positive rates in hospitals of different scales was statistically signifi-cant(X2=35.34,P<0.001).In 2020,12 provinces/municipalities had over 10 000 patients underwent HCV-rela-ted test,and HCV positive rates ranged 0.19%-0.81%,with the highest rate from Hainan Province.HCV posi-tive rates in different departments were 0.06%-0.82%,with the lowest positive rate in the department of pedia-trics and the highest in the department of internal medicine.In 2003 and 2020,HCV positive rates in the depart-ment of infectious diseases were the highest,being 7.95%and 3.48%,respectively.Followed by departments of orthopedics(7.72%),gastroenterology(3.77%),nephrology(3.57%)and general intensive care unit(ICU,3.10%)in 2003,as well as departments of gastroenterology(1.35%),nephrology(1.18%),endocrinology(0.91%),and general intensive care unit(ICU,0.79%)in 2020.Conclusion Compared with 2003,HCV positive rate decreased significantly in 2020.HCV infected patients were mainly from the department of infectious diseases,followed by departments of gastroenterology,nephrology and general ICU.HCV infection positive rate varies with gender,age,and region.
10.A new furan α -butenolactones from Alisma orientale and their potential antifibrotic activities
Deng-hui ZHU ; Peng-li GUO ; Si-qi TAO ; Jing-ke ZHANG ; Meng-nan ZENG ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(7):2058-2061
Four furan

Result Analysis
Print
Save
E-mail