1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
3.Reducing language barriers, promoting information absorption, and communication using fanyi
Difei WANG ; Guannan CHEN ; Lin LI ; Shaodi WEN ; Zijing XIE ; Xiao LUO ; Li ZHAN ; Shuangbin XU ; Junrui LI ; Rui WANG ; Qianwen WANG ; Guangchuang YU
Chinese Medical Journal 2024;137(16):1950-1956
Interpreting genes of interest is essential for identifying molecular mechanisms, but acquiring such information typically involves tedious manual retrieval. To streamline this process, the fanyi package offers tools to retrieve gene information from sources like National Center for Biotechnology Information (NCBI), significantly enhancing accessibility. Additionally, understanding the latest research advancements and sharing achievements are crucial for junior researchers. However, language barriers often restrict knowledge absorption and career development. To address these challenges, we developed the fanyi package, which leverages artificial intelligence (AI)-driven online translation services to accurately translate among multiple languages. This dual functionality allows researchers to quickly capture and comprehend information, promotes a multilingual environment, and fosters innovation in academic community. Meanwhile, the translation functions are versatile and applicable beyond biomedicine research to other domains as well. The fanyi package is freely available at https://github.com/YuLab-SMU/fanyi.
4.Research progress on molecular mechanism underlying neuropsychiatric diseases involving NMDA receptor and α2 adrenergic receptor
Wen-Xin ZHANG ; Dong-Yu ZHOU ; Yi HAN ; Ran JI ; Lin AI ; An XIE ; Xiao-Jing ZHAI ; Jun-Li CAO ; Hong-Xing ZHANG
Chinese Pharmacological Bulletin 2024;40(12):2206-2212
Glutamate,norepinephrine,and their receptors com-prise the glutamatergic and norepinephrine systems,which mu-tually affect each other and play essential roles in mediating vari-ous neuropsychiatric diseases.This paper reviews the functions of N-methyl-D-aspartate receptor(NMDA-R)and α2-adrenergic receptor(α2-AR)and their functional crosstalk at the molecular level in brain in common neuropsychiatric diseases,which would benefit our understanding of neuropathophysiology of psychiatric diseases,drug development and optimization of clinical neuro-psychopharmacology.
5.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
6.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
7.Genomic and cellular infection characteristics of a newly isolated Mangshi virus in China
Heng YANG ; Zhan-Hong LI ; Lei XIAO ; Zhuo-Ran LI ; Jia-Rui XIE ; De-Fang LIAO ; Lin GAO ; Hua-Chun LI
Chinese Journal of Zoonoses 2024;40(6):504-511,528
The genomic characteristics and cellular tropism of a Mangshi virus(MSV)isolated in China were investigated,thereby establishing a robust foundation for further research on the evolution and pathogenicity of MSV.The genome sequence of MSV strain V301/YNJH/2019 was obtained by next-generation sequencing,followed by phylogenetic tree construction and rearrangement assessment using software IQtree,RPD4,and Simplot.Viral proliferation was assessed in C6/36(Aedes albop-ictus),Vero(African green monkey kidney),and BHK(baby hamster kidney)cells.An initial epidemiological investigation of MSV in local cattle and goats was conducted using the serum neutralization test.The genome of MSV strain V301/YNJ H/2019 was 20623 bp in length,encompassing 12 segments of double-stranded RNA(Seg-1 to Seg-12).Sequence analysis confirmed genomic rearrangement of the Seg-1 and Seg-11 sequences,ex-hibiting high similarity to MSV isolated from lake sediment in China in 2022,while Seg-2 to Seg-10 and Seg-12 were most closely related to a MSV strain isolated from mosquitoes in China in 2013.The virus efficiently proliferated and induced sig-nificant cytopathic effects(CPE)in both C6/36 and BHK cells,but limited replication and no observable CPE in Vero cells.No detectable neutralizing antibodies against MSV were detected in 20 goat serum samples collected in Mangshi,while 2 of 20 bo-vine serum samples were positive with neutralizing antibody titers of 1:128 and 1:54.Whole genome sequencing revealed re-assortment events of the V301/YNJH/2019 strain,which is capable of infecting C6/36,BHK,and Vero cells.MSV infection was confirmed in cattle in Mangshi.
8.Progress of research into mitochondrial mass control system's role in the pathogenesis of septic cardiomyopathy
Youcheng XIE ; Shufang XIAO ; Xuemei LIN ; Shun CHEN ; Jin XU ; Fei WANG
Chinese Journal of Comparative Medicine 2024;34(6):106-112
Septic cardiomyopathy(SIC)is an organ dysfunction frequently observed in sepsis and characterized by high mortality and poor prognosis.Understanding the complex pathogenesis of SIC and developing effective therapeutic tools are critical issues that require attention.Previous studies have demonstrated the significant role of mitochondrial dysfunction in the development of SIC.In the presence of SIC,and the mitochondrial dysfunction that result,the aberrant regulation of the mitochondrial quality control system(MQC)can exacerbate cardiomyocyte injury.Recent studies have demonstrated that the MQC maintains the dynamics of mitochondrial homeostasis through its regulation of mitochondrial biogenesis,fusion/fission,and autophagy.This article provides an overview of the role of MQC in SIC pathogenesis,reviews the latest studies in the field,and analyzes MQC's potential as a therapeutic target.
9.Effect of Shikonin on Autophagy and Apoptosis of Human Promyelocytic Leukemia Cells
Yan CHEN ; Xue-Mei XIE ; Xiao-Lin ZHANG ; Xiao-Ling ZHANG
Journal of Experimental Hematology 2024;32(2):416-421
Objective:To explore the effect of shikonin on autophagy and apoptosis of human promyelocytic leukemia cells and its possible mechanism.Methods:Human promyelocytic leukemia cells NB4 in the logarithmic growth phase were divided into control group(untreated NB4 cells),shikonin group(0.3 μmol/L shikonin treatment),740Y-P group(15 μmol/L PI3K/Akt/mTOR pathway activator 740Y-P treatment),shikonin+740Y-P group(0.3 μmol/L shikonin and 15 μmol/L 740Y-P co-treatment),after 24 hours of treatment,the cells were used for subsequent experiments.CCK-8 method was used to detect cell viability,monodansylcadaverine(MDC)staining to detect the aggregation of autophagic vesicles,flow cytometry to detect cell apoptosis,and Western blot to detect the expression of Beclinl,LC3,p62,Bax,cleaved caspase-3,Bcl-2 and PI3K/Akt/mTOR pathway related proteins.Results:Compared with the control group,the purple punctate fluorescence intensity,apoptosis rate,Beclinl,LC3-Ⅱ/LC3-Ⅰ,cleaved caspase-3,and Bax protein expression in NB4 cells were increased in the shikonin group,while OD450 value(24,48 h)and the expressions of Bcl-2 and p62 proteins were decreased(all P<0.05).Compared with the control group,the purple punctate fluorescence intensity,apoptosis rate,Beclin1,LC3-Ⅱ/LC3-1,cleaved caspase-3,and Bax protein expression in NB4 cells were decreased,while OD450 value(24,48 h)and the expressions of Bcl-2 and p62 proteins were increased in the 740Y-P group(all P<0.05).Compared with the shikonin group,the purple punctate fluorescence intensity,apoptosis rate,Beclinl,LC3-Ⅱ/LC3-1,cleaved caspase-3,and Bax protein expression in NB4 cells were decreased,while OD450 value(24,48 h)and the expressions of Bcl-2 and p62 proteins were increased in the shikonin+740Y-P group(all P<0.05).Compared with the control group,the expression of PI3K/Akt/mTOR pathway related proteins p-PI3K,p-Akt,and p-mTOR in NB4 cells were significantly decreased in the shikonin group,while those in the 740Y-P group were increased(all P<0.05).Compared with the shikonin group,the expressions of p-PI3K,p-Akt,and p-mTOR proteins in NB4 cells were significantly increased in the shikonin+740Y-P group(all P<0.05).Conclusion:Shikonin may promote autophagy and apoptosis of NB4 cells by inhibiting PI3K/Akt/mTOR pathway.
10.Impact of the construction of smoke-free government on staff′s smoking cessation behavior
Yi NAN ; Li XIE ; Huiyu XIE ; Luge ZHANG ; Fangfang LIU ; Yan YANG ; Linmeng XU ; Xiaokai JIA ; Lin XIAO
Chinese Journal of Health Management 2024;18(9):680-685
Objective:To assess the impact of the construction of smoke-free government on the smoking and cessation behaviors of staff members.Methods:This was a retrospective cohort study. The study used stratified random cluster sampling method to select 144 government institutions from 31 Provinces (Autonomous Regions and Municipalities) and the Xinjiang Production and Construction Corps. The survey was carried out between October and November, 2023 by filling out questionnaires online among the insiders of the institutions and all the smoking staff members. The main indicators included the number of smokers before and after the construction of smoke-free governments and the measures for the construction of smoke-free governments. 144 questionnaires from insiders were recovered, all of which were included in the analysis; 1 776 questionnaires from smokers were recovered, including 1 716 valid questionnaires. The SAS 9.4 was used to perform χ 2 test and log-binomial regression analysis. Results:The percentage of smoking staff members decreased from 8.81% before the construction to 6.70% after the construction, and the difference was statistically significant ( χ 2=63.23, P<0.001). Comprehensive smoking ban in indoor public places ( OR=2.301, 95% CI: 1.433-3.694), punishment mechanism for smoking staff members ( OR=1.219, 95% CI: 1.124-1.322), smoking cessation competitions ( OR=1.865, 95% CI: 1.234-2.818) and reimbursement for or provision of smoking cessation medications ( OR=2.210, 95% CI: 1.002-4.874) were facilitators to motivate the smoking staff members to quit (all P<0.01). Numbers of smoking leaders ( OR=0.858, 95% CI: 0.807-0.913) and smoking years of smoking staff members ( OR=0.932, 95% CI: 0.918-0.946) negatively influenced the smoking staff members to quit (both P<0.001). Conclusions:The construction of smoke-free governments can effectively promote the smoking cessation behaviors of smoking staff members. In addition, comprehensive smoke-free policies, punishment mechanism for smoking staff members and activities such as smoking cessation competitions, and reimbursement for or provision of smoking cessation medications are important.

Result Analysis
Print
Save
E-mail