1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Synergistic Effect and Mechanism of FUT8 Inhibitor 2FF With DOX for Cancer Treatment
Zhi-Dong XIE ; Xiao-Lian ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):478-486
ObjectiveChemotherapy is one of the important therapeutic approaches for cancer treatment. However, the emergence of multidrug resistance and side effects significantly limit its application. To address these challenges, chemotherapy is often combined with other drugs or therapies. Among the 13 human fucosyltransferases (FUTs) identified, FUT8 (alpha-(1,6)-fucosyltransferase) is the only enzyme responsible for core fucosylation. Core fucosylation plays an important role in cancer occurrence, metastasis and chemotherapy resistance, making the suppression of FUT8 a potential strategy for reversing multidrug resistance. This study aims to evaluate the feasibility of combining the small molecule FUT8 inhibitor 2FF (2-deoxy-2-fluoro-L-fucose) with the clinical chemotherapeutic drug doxorubicin (DOX) for treating malignant tumors. MethodsThe human hepatocellular carcinoma cell line HepG2 and mouse colon cancer cell line CT26 cells were treated with 2FF, DOX or their combination and core fucosylation levels were assessed using Lectin blot. HepG2 and CT26 cells were exposed to 50 μmol/L 2FF for 72 h, followed by treatment with a gradient concentration of DOX for 24 h. Cell viability and IC50 values were determined via the CCK-8 assay. Transwell invasion assays were conducted to evaluate the combined effect of 2FF and DOX on the invasion ability of HepG2 cells. Flow cytometry was performed to analyze the impact of 2FF, DOX and their combination on membrane PD-L1 expression of HepG2 cells. To assess the in vivo effect, 6- to 8-week-old female BALB/c mice (20-25 g), were subcutaneously injected with 1×106 CT26 cells into the right axilla (four groups, six mice in each group). After the average tumor volume reached 100 mm3, mice were treated with DOX, 2FF, their combination, or saline (mock group) every other day. DOX was administrated intraperitoneally (2 mg/kg), 2FF intravenously (5 mg/kg), and the combination group, received the both treatment. Tumor size was measured every other day using a vernier caliper. ResultsThis study demonstrated that DOX upregulates the core fucosylation levels in HepG2 and CT26 cells,while 2FF effectively inhibits this DOX-induced effect. Furthermone, 2FF enhanced the sensitivity of HepG2 and CT26 cells to DOX. The combination of 2FF and DOX synergistically inhibited the invasion ability of HepG2 cells, and enhanced the anti-tumor efficacy of CT26 subcutaneous tumor model in BALB/c mice. However the combination treatment led to weight loss in mice. In addition, DOX increased the cell surface PD-L1 expression in HepG2 cells, which was effectively suppressed by 2FF. ConclusionThe FUT8 inhibitor 2FF effectively suppresses DOX-induced upregulation of core fucosylation and PD-L1 levels in tumor cells, and 2FF synergistically enhances the anticancer efficacy of DOX.
3.Mechanism of Naoxintong Capsules in treatment of rats with multiple cerebral infarctions and myocardial injury based on HIF-1α/VEGF pathway.
Xiao-Lu ZHANG ; Jin-Feng SHANG ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Bo-Hong WANG ; Wan-Ting WEI ; Wen-Bin CHEN ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(7):1889-1899
This study aims to explore whether Naoxintong Capsules improve multiple cerebral infarctions and myocardial injury via promoting angiogenesis, thereby exerting a simultaneous treatment effect on both the brain and heart. Male SD rats were randomly divided into six groups: sham-operated group, model group, high-dose, medium-dose, and low-dose groups of Naoxintong Capsules(440, 220, and 110 mg·kg~(-1)), and nimodipine group(10.8 mg·kg~(-1)). Rat models of multiple cerebral infarctions were established by injecting autologous thrombus, and samples were collected and tested seven days after modeling. Evaluations included multiple cerebral infarction model assessments, neurological function scores, grip strength tests, and rotarod tests, so as to evaluate neuromotor functions. Morphological structures of brain and heart tissue were observed using hematoxylin-eosin(HE) staining, Nissl staining, and Masson staining. Network pharmacology was employed to screen the mechanisms of Naoxintong Capsules in improving multiple cerebral infarctions and myocardial injury. Neuronal and myocardial cell ultrastructures were observed using transmission electron microscopy. Apoptosis rate in brain neuronal cells was detected by TdT-mediated dUTP nick end labeling(TUNEL) staining, and reactive oxygen species(ROS) levels in myocardial cells were measured. Immunofluorescence was used to detect the expression of platelet endothelial cell adhesion molecule-1(CD31), antigen identified by monoclonal antibody Ki67(Ki67), hematopoietic progenitor cell antigen CD34(CD34), and hypoxia inducible factor-1α(HIF-1α) in brain and myocardial tissue. Western blot, and real-time quantitative polymerase chain reaction(RT-qPCR) were used to detect the expression of HIF-1α, vascular endothelial growth factor(VEGF), vascular endothelial growth factor receptor 2(VEGFR2), sarcoma(Src), basic fibroblast growth factor(bFGF), angiopoietin-1(Ang-1), and TEK receptor tyrosine kinase(Tie-2). Compared with the model group, the medium-dose group of Naoxintong Capsules showed significantly lower neurological function scores, increased grip strength, and prolonged time on the rotarod. Pathological damage in brain and heart tissue was reduced, with increased and more orderly arranged mitochondria in neurons and cardiomyocytes. Apoptosis in brain neuronal cells was decreased, and ROS levels in cardiomyocytes were reduced. The microvascular density and endothelial cells of new blood vessels in brain and heart tissue increased, with increased overlapping regions of CD31 and Ki67 expression. The relative protein and mRNA expression levels of HIF-1α, VEGF, VEGFR2, Src, Ang-1, Tie-2, and bFGF were elevated in brain tissue and myocardial tissue. Naoxintong Capsules may improve multiple cerebral infarctions and myocardial injury by mediating HIF-1α/VEGF expression to promote angiogenesis.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Cerebral Infarction/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Capsules
;
Signal Transduction/drug effects*
;
Humans
;
Brain/metabolism*
;
Myocardium/metabolism*
;
Apoptosis/drug effects*
4.Research progress on pharmacological effects and mechanism of α-asarone and β-asarone in Acori Tatarinowii Rhizoma.
Hao WANG ; Lei GAO ; Jin-Lian ZHANG ; Ling-Yun ZHONG ; Shu-Han JIN ; Xiao-Yan CHEN ; Wen ZHANG ; Jia-Wen WEN
China Journal of Chinese Materia Medica 2025;50(9):2305-2316
Acori Tatarinowii Rhizoma is the dried rhizome of Acorus tatarinowii in the family of Tennantiaceae, which has the efficacy of opening up the orifices and expelling phlegm, awakening the mind and wisdom, and resolving dampness and opening up the stomach. Modern studies have shown that volatile oil is the main active ingredient of Acori Tatarinowii Rhizoma, and α-asarone and β-asarone have been proved to be the active ingredients in the volatile oil of Acori Tatarinowii Rhizoma, with pharmacological effects such as anti-Alzheimer's disease, antiepileptic, anti-Parkinson's disease, antidepressant, anticerebral ischemia/reperfusion injury, anti-thrombosis, lipid-lowering, and antitumor. By summarising and outlining the pharmacological effects of α-asarone and β-asarone and elucidating the possible mechanisms of their pharmacological effects, we can provide theoretical basis for the further research and clinical application of Acori Tatarinowii Rhizoma.
Allylbenzene Derivatives
;
Acorus/chemistry*
;
Anisoles/chemistry*
;
Rhizome/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Animals
5.RXRα modulates hepatic stellate cell activation and liver fibrosis by targeting CaMKKβ-AMPKα axis.
Lijun CAI ; Meimei YIN ; Shuangzhou PENG ; Fen LIN ; Liangliang LAI ; Xindao ZHANG ; Lei XIE ; Chuanying WANG ; Huiying ZHOU ; Yunfeng ZHAN ; Gulimiran ALITONGBIEKE ; Baohuan LIAN ; Zhibin SU ; Tenghui LIU ; Yuqi ZHOU ; Zongxi LI ; Xiaohui CHEN ; Qi ZHAO ; Ting DENG ; Lulu CHEN ; Jingwei SU ; Luoyan SHENG ; Ying SU ; Ling-Juan ZHANG ; Fu-Quan JIANG ; Xiao-Kun ZHANG
Acta Pharmaceutica Sinica B 2025;15(7):3611-3631
Hepatic stellate cells (HSCs) are the primary fibrogenic cells in the liver, and their activation plays a crucial role in the development and progression of hepatic fibrosis. Here, we report that retinoid X receptor-alpha (RXRα), a unique member of the nuclear receptor superfamily, is a key modulator of HSC activation and liver fibrosis. RXRα exerts its effects by modulating calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-mediated activation of AMP-activated protein kinase-alpha (AMPKα). In addition, we demonstrate that K-80003, which binds RXRα by a unique mechanism, effectively suppresses HSC activation, proliferation, and migration, thereby inhibiting liver fibrosis in the CCl4 and amylin liver NASH (AMLN) diet animal models. The effect is mediated by AMPKα activation, promoting mitophagy in HSCs. Mechanistically, K-80003 activates AMPKα by inducing RXRα to form condensates with CaMKKβ and AMPKα via a two-phase process. The formation of RXRα condensates is driven by its N-terminal intrinsic disorder region and requires phosphorylation by CaMKKβ. Our results reveal a crucial role of RXRα in liver fibrosis regulation through modulating mitochondrial activities in HSCs. Furthermore, they suggest that K-80003 and related RXRα modulators hold promise as therapeutic agents for fibrosis-related diseases.
6.Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione.
Fu'an XIE ; Yujia NIU ; Xiaobing CHEN ; Xu KONG ; Guangting YAN ; Aobo ZHUANG ; Xi LI ; Lanlan LIAN ; Dongmei QIN ; Quan ZHANG ; Ruyi ZHANG ; Kunrong YANG ; Xiaogang XIA ; Kun CHEN ; Mengmeng XIAO ; Chunkang YANG ; Ting WU ; Ye SHEN ; Chundong YU ; Chenghua LUO ; Shu-Hai LIN ; Wengang LI
Journal of Pharmaceutical Analysis 2025;15(1):101068-101068
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
7.Effects of Total Intravenous Anesthesia and Inhalational Anesthesia on Postoperative Recovery in Patients Undergoing Transsphenoidal Pituitary Surgery:A Systematic Review.
Yun-Ying FENG ; Yu-Pei ZHANG ; Yue-Lun ZHANG ; Bing XING ; Wei LIAN ; Xiao-Peng GUO ; Lu-Lu MA ; Yu-Guang HUANG
Acta Academiae Medicinae Sinicae 2025;47(3):434-440
Objective To systematically evaluate the effects of total intravenous anesthesia and inhalational anesthesia on postoperative recovery in patients undergoing transsphenoidal pituitary tumor resection.Methods A comprehensive search was conducted in international biomedical databases including Ovid Medline,Embase,CINAHL(EBSCO),Cochrane Library,and Web of Science,from inception to July 4,2023.Additionally,ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing and completed trials.The randomized controlled trials(RCT)comparing total intravenous anesthesia and inhalational anesthesia in patients undergoing transsphenoidal surgery for pituitary tumors were included.The methodological quality of the included studies was evaluated by the Cochrane Collaboration tool.Relevant data were extracted and synthesized for analysis.Results A total of 327 records were identified,of which eight RCTs met the inclusion criteria.Four studies showed that the patients receiving desflurane or sevoflurane anesthesia experienced faster emergence from anesthesia than those receiving propofol.Two studies indicated that patients in the propofol group had lower levels of emergence agitation and a lower incidence of early postoperative nausea and vomiting.The results on postoperative cognitive function were inconsistent across studies.No differences were found between the groups in terms of postoperative complications or overall recovery quality during hospitalization.Conclusions Inhalational anesthesia appears to provide an advantage in promoting faster emergence following transsphenoidal pituitary surgery,whereas total intravenous anesthesia may contribute to smoother and more stable recovery.Further high-quality studies are needed to clarify the effects of different anesthetic techniques on both short- and long-term postoperative recovery.
Humans
;
Anesthesia, Intravenous
;
Pituitary Neoplasms/surgery*
;
Anesthesia, Inhalation
;
Randomized Controlled Trials as Topic
;
Anesthesia Recovery Period
;
Pituitary Gland/surgery*
;
Postoperative Period
8. Effect of LncRNA p21 regulating Hippo-YAP signaling pathway on formation of abdominal aortic aneurysm in mice and its mechanism
Xiao CHEN ; Jin-Jun WANG ; Lin-Lin ZHANG ; Lian-Lian GUO ; Zhong-Wang ZHANG ; Juan-Zi ZHANG
Chinese Pharmacological Bulletin 2024;40(1):55-62
Aim To investigate the effect of long non- coding RNA p21 (LncRNA p21) regulating Hippo- Yes-associated protein (Hippo-YAP) signaling pathway on the formation of abdominal aortic aneurysm (AAA) in mice. Methods C57BL/6 ApoE
9.Exploring Health Economic Evaluation Methods for Disease Screening
Dunming XIAO ; Shiqin ZHANG ; Dai LIAN ; Shanyan ZHOU ; Yingyao CHEN
Chinese Health Economics 2024;43(8):5-10
Objective:To explore the health economic evaluation methods of disease screening,providing insights for scholars conducting related research.Methods:By integrating relevant content from modem epidemiology,health statistics,and health economics,it investigates the differences in conducting health economic evaluations of disease screening using authenticity indicators(sensitivity,specificity)and predictive value indicators(positive predictive value,negative predictive value),and combines empirical studies with cases from the literature.Results:Authenticity indicators(sensitivity,specificity)are intrinsic measures of diagnostic tests,unaffected by the disease prevalence in the sample population,making them more suitable for conducting health economic evaluations of disease screening.Moreover,authenticity indicators are easy to obtain,and the model calculations are straightforward and convenient.Case study results demonstrate that compared to risk score screening,the Incremental Cost-Effectiveness Ratio(ICER)of fasting plasma glucose(FPG)testing for type 2 diabetes is 626,indicating that for every additional diabetic patient identified through risk score screening,an extra 626 yuan is spent.Conclusion:It is recommended to use authenticity indicators for conducting health economic evaluations of disease screening,standardize the path methods for model selection,and continuously improve the evidence quality of health economic evaluations of disease screening in China.
10.Exploring Health Economic Evaluation Methods for Disease Screening
Dunming XIAO ; Shiqin ZHANG ; Dai LIAN ; Shanyan ZHOU ; Yingyao CHEN
Chinese Health Economics 2024;43(8):5-10
Objective:To explore the health economic evaluation methods of disease screening,providing insights for scholars conducting related research.Methods:By integrating relevant content from modem epidemiology,health statistics,and health economics,it investigates the differences in conducting health economic evaluations of disease screening using authenticity indicators(sensitivity,specificity)and predictive value indicators(positive predictive value,negative predictive value),and combines empirical studies with cases from the literature.Results:Authenticity indicators(sensitivity,specificity)are intrinsic measures of diagnostic tests,unaffected by the disease prevalence in the sample population,making them more suitable for conducting health economic evaluations of disease screening.Moreover,authenticity indicators are easy to obtain,and the model calculations are straightforward and convenient.Case study results demonstrate that compared to risk score screening,the Incremental Cost-Effectiveness Ratio(ICER)of fasting plasma glucose(FPG)testing for type 2 diabetes is 626,indicating that for every additional diabetic patient identified through risk score screening,an extra 626 yuan is spent.Conclusion:It is recommended to use authenticity indicators for conducting health economic evaluations of disease screening,standardize the path methods for model selection,and continuously improve the evidence quality of health economic evaluations of disease screening in China.

Result Analysis
Print
Save
E-mail