1.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
2.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
3.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
4.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
5.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
6.Study on neuronal protection of Gualou Guizhi decoction via inhibiting M1 microglia polarization
Xing-Hua ZHONG ; Hai-Xia HU ; Xin-Jun LIN ; Xiao-Qin ZHU
The Chinese Journal of Clinical Pharmacology 2024;40(15):2197-2201
Objective To explore the molecular mechanism of Gualou Guizhi decoction which regulates the interferon regulator factor 5(IRF5)signaling pathway to inhibit M1 type microglia activation and reduce the inflammatory response to protect damaged nerve cells.Methods Microglia(BV2)cells were randomly divided into BV2-control,BV2-model,BV2-experimental-L,-M,-H groups.The BV2-control group was given routine culture;the BV2-model group used 100 ng·mL-1 lipopolysaccharide(LPS)to stimulate BV2 which establish an inflammatory model;the BV2-experimental-L,-M,-H groups were cultured in 50,100,200 μg·mL-1 GLGZD and 100 ng·mL-1 LPS.The HT22 cells were divided into the HT-22-blank group,HT-22-model group,HT-22-control group and HT-22 experimental group.HT-22-blank group were conventional culture;HT-22-model group were oxygen glucose deprivation was performed for 2 h,then the complete medium was replaced for 24 h;HT-22-control group were after 2 h of oxygen glucose deprivation,the 100 ng·mL-1 LPS conditioned medium was replaced and incubated for 24 h;HT-22-experimental group were after 2 h of oxygen glucose deprivation,the 200 μg·mL-1 GLGZD conditioned medium was added for 24 h.Interleukin-12(IL-12)and IL-23 were detected by enzyme-linked immunosorbent assay(ELISA);the protein of IRF5,cluster differentiation 16(CD1 6)and MHC class Ⅱ(MHC-Ⅱ)was detected by Western blot;the expression of the synaptic marker protein class Ⅲ β-Tubulin(Tuj-1)was observed by immunofluorescence.Results IL-12 contents in the BV2-control,BV2-model and BV2-experimental-L,-M,-H groups were(2.62±1.02),(10.67±3.22),(6.87±1.61),(3.96±1.22)and(3.36±1.04)pg·mL-1;IL-23 contents were(20.40±2.04),(77.08±3.25),(76.28±3.75),(63.96±4.94)and(54.48±3.34)pg·mL-1;relative expression levels of IRF5 protein were 0.80±0.41,2.22±0.69,1.11±0.11,0.92±0.39 and 0.65±0.29;relative expression levels of CD16 protein were 0.69±0.45,1.91±0.52,1.42±0.22,1.04±0.15 and 0.67±0.30;relative expression levels of MHC-Ⅱ protein were 0.89±0.27,1.96±0.19,1.34±0.38,1.15±0.19 and 0.68±0.24.BV2-experimental-M,-H groups were compared with the BV2-model group,the differences were statistically significant(all P<0.05).The Tuj-1 protein expression levels were 28.85±6.69,14.44±1.98,7.75±1.12 and 20.05±3.54,determined in the HT22-blank,HT22-model,HT22-control and HT22-experimental groups.The HT22-experimental group was compared with the HT22-control group,the difference was statistically significant(P<0.05).Conclusion GLGZD may reduces the activation of microglia M1 phenotype through IRF5 signaling pathway,and then inhibits inflammatory response to protect damaged nerve cells.
7.Elemene Antitumor Drugs Development Based on "Molecular Compatibility Theory" and Clinical Application: A Retrospective and Prospective Outlook.
Xiao-Ying JIANG ; Li-Ping SHI ; Jun-Long ZHU ; Ren-Ren BAI ; Tian XIE
Chinese journal of integrative medicine 2024;30(1):62-74
Elemene, derived from Curcuma wenyujin, one of the "8 famous genuine medicinal materials of Zhejiang province," exhibits remarkable antitumor activity. It has gained wide recognition in clinical practice for effectiveness on tumors. Dr. XIE Tian, introduced the innovative concept of "molecular compatibility theory" by combining Chinese medicine principles, specifically the "monarch, minister, assistant, and envoy" theory, with modern biomedical technology. This groundbreaking approach, along with a systematic analysis of Chinese medicine and modern biomedical knowledge, led to the development of elemene nanoliposome formulations. These novel formulations offer numerous advantages, including low toxicity, well-defined composition, synergistic effects on multiple targets, and excellent biocompatibility. Following the principles of the "molecular compatibility theory", further exploration of cancer treatment strategies and methods based on elemene was undertaken. This comprehensive review consolidates the current understanding of elemene's potential antitumor mechanisms, recent clinical investigations, advancements in drug delivery systems, and structural modifications. The ultimate goal of this review is to establish a solid theoretical foundation for researchers, empowering them to develop more effective antitumor drugs based on the principles of "molecular compatibility theory".
Humans
;
Retrospective Studies
;
Antineoplastic Agents/therapeutic use*
;
Neoplasms/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Sesquiterpenes/therapeutic use*
8.Investigation on thermodynamics and kinetics of puerarin sodium chelate
Wei JIANG ; Jun-xiao ZHU ; Hui CHEN ; Jing-wen ZHANG ; Jian-jun ZHANG ; Yuan GAO ; Shuai QIAN ; Yuan-feng WEI
Acta Pharmaceutica Sinica 2024;59(9):2648-2658
Tablets represent the most widely used oral solid dosage form in the pharmaceutical industry. Puerarin monohydrate (PUEM), a solid form of the natural antihypertensive drug puerarin, is commercially available. However, the low solubility of PUEM poses a significant challenge for the development of its tablet dosage form. In this study, we successfully prepared the sodium chelates of puerarin (PUE-Na·7H2O) using reactive crystallization techniques. The crystal structure of PUE-Na·7H2O was analyzed using single crystal technology, which revealed the structural characteristics of its metal chelate. Our thermodynamic studies demonstrated that the formation of PUE-Na·7H2O involved the simultaneous deprotonation of PUE and the chelation of PUE- and Na+. This reaction process was spontaneous and exothermic (Δ
9.Analysis of the mechanisms of Guanxinning Tablet for antithrombotic and microthrombotic effects caused by COVID-19 based on network pharmacology
Pei-yu GONG ; Guang-xu XIAO ; Wen-jun LI ; Guan-wei FAN ; Ming LÜ ; Jin-qiang ZHU
Acta Pharmaceutica Sinica 2024;59(9):2545-2555
Thrombosis is a key factor that increases the mortality rate of COVID-19 patients and causes long COVID sequelae. Guanxinning Tablet (GXNT), which is composed of
10.Cloning and interacted protein identification of AGL12 gene from Lonicera macranthoides
Li-jun LONG ; Hui-jie ZENG ; Zhong-quan QIAO ; Xiao-ming WANG ; Chang-zhu LI ; Si-si LIU ; Ying-zi MA
Acta Pharmaceutica Sinica 2024;59(5):1458-1466
MADS-box protein family are important transcriptional regulatory factors in plant growth and development. The

Result Analysis
Print
Save
E-mail