1.Reduction in RNF125-mediated RIG-I ubiquitination and degradation promotes renal inflammation and fibrosis progression.
Lu-Xin LI ; Ting-Ting JI ; Li LU ; Xiao-Ying LI ; Li-Min LU ; Shou-Jun BAI
Acta Physiologica Sinica 2025;77(3):385-394
Persistent inflammation plays a pivotal role in the initiation and progression of renal fibrosis. Activation of the pattern recognition receptor retinoic acid-inducible gene-I (RIG-I) is implicated in the initiation of inflammation. This study aimed to investigate the upstream mechanisms that regulates the activation of RIG-I and its downstream signaling pathway. Eight-week-old male C57BL/6 mice were used to establish unilateral ureteral obstruction (UUO)-induced renal fibrosis model, and the renal tissue samples were collected 14 days later for analysis. Transforming growth factor-β (TGF-β)-treated mouse renal tubular epithelial cells were used in in vitro studies. The results demonstrated that, compared to the control group, UUO kidney exhibited significant fibrosis, which was accompanied by the increases of RIG-I, p-NF-κB p65 and inflammatory cytokines, such as TNF-α and IL-1β. Additionally, the protein level of the E3 ubiquitin ligase RNF125 was significantly downregulated and predominantly localized in the renal tubular epithelial cells. Similarly, the treatment of tubular cells with TGF-β induced the increases in RIG-I, p-NF-κB p65 and inflammatory cytokines while decreasing RNF125. Co-immunoprecipitation (Co-IP) assays confirmed that RNF125 was able to interact with RIG-I. Overexpression of RNF125 promoted the ubiquitination of RIG-I, and accelerated its degradation via the ubiquitin-proteasome pathway. Overexpression of RNF125 in UUO kidneys and in vitro tubular cells effectively mitigated the inflammatory response and renal fibrosis. In summary, our results demonstrated that the decrease in RNF125 under pathological conditions led to reduction in RIG-I ubiquitination and degradation, activation of the downstream NF-κB signaling pathway and increase in inflammatory cytokine production, which promoted the progression of renal fibrosis.
Animals
;
Fibrosis
;
Male
;
Ubiquitination
;
Mice
;
Mice, Inbred C57BL
;
DEAD Box Protein 58
;
Ubiquitin-Protein Ligases/physiology*
;
Inflammation/metabolism*
;
Ureteral Obstruction/complications*
;
Kidney/pathology*
;
Signal Transduction
;
Transforming Growth Factor beta/pharmacology*
2.Beneficial Bacterial Modulation by Gypsum Fibrosum and Terra Flava Usta in Gut Microbiota.
Meng-Jie LI ; Yang-Yang DONG ; Na LI ; Rui ZHANG ; Hong-Lin ZHANG ; Zhi-Mao BAI ; Xue-Jun KANG ; Peng-Feng XIAO ; Dong-Rui ZHOU
Chinese journal of integrative medicine 2025;31(9):812-820
OBJECTIVE:
To investigate the regulatory effects of two traditional mineral medicines (TMMs), Gypsum Fibrosum (Shigao, GF) and Terra Flava Usta (Zaoxintu, TFU), on gut-beneficial bacteria in mice, and preliminarily explore their mechanisms of action.
METHODS:
Mice were randomly divided into 3 groups (n=10 per group): the control group (standard diet), the GF group (diet supplemented with 2% GF), and the TFU group (diet supplemented with 2% TFU). After 4-week intervention, 16S rRNA gene sequencing was used to analyze the changes in the gut microbiota (GM). Scanning electron microscopy, in combination with coumarin A tetramethyl rhodamine conjugate and Hoechst stainings, was used to observe the bacteria and biofilm formation.
RESULTS:
Principal coordinate analysis revealed that GF and TFU significantly altered the GM composition in mice. Further analysis revealed that GF and TFU affected different types of gut bacteria, suggesting that different TMMs may selectively modulate specific bacterial populations. For certain bacteria, such as Faecalibaculum and Ileibacterium, both GF and TFU exhibited growth-promoting effects, implying that they may be sensitive to TMMs and that different TMMs can increase their abundance through their respective mechanisms. Notably, Lactobacillus reuteri, a widely recognized and used probiotic, was significantly enriched in the GF group. Random forest analysis identified Ileibacterium valens as a potential indicator bacterium for TMMs' impact on GM. Further mechanistic studies showed that gut bacteria formed biofilm structures on the TFU surface.
CONCLUSIONS
This study provides new insights into the interaction between TMMs and GM. As safe and effective natural clays, GF and TFU hold promise as potential candidates for prebiotic development.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Bacteria/growth & development*
;
Mice
;
Biofilms/drug effects*
;
Male
;
RNA, Ribosomal, 16S/genetics*
3.Curcumin Ameliorates Cisplatin-Induced Cardiovascular Injuries by Upregulating ERK/p-ERK Expression in Rats.
Jun-Tao HAO ; Meng-Piao LIN ; Jin WANG ; Feng SONG ; Xiao-Jie BAI
Chinese journal of integrative medicine 2025;31(8):717-725
OBJECTIVE:
To investigate cisplatin-induced cardiovascular toxicity and explore the protective effects and potential mechanism of curcumin co-treatment.
METHODS:
Forty adult male Sprague-Dawley rats were numbered and randomly divided into control group, cisplatin group (7.5 mg/kg, once a week, for 2 weeks), curcumin group (200 mg/kg per day, for 2 weeks) and cisplatin+curcumin group (cisplatin 7.5 mg/kg, once a week, and curcumin 200 mg/kg per day for 2 weeks) by a random number table method, with 10 rats in each group. Cardiac and vascular morphology and functions were assessed using hematoxylin-eosin and Masson's trichrome staining, serum indexes detection, echocardiography, electrocardiogram (ECG), blood pressure monitoring, vascular ring isometric tension measurement, and left ventricular pressure evaluation. The expressions of extracellular signal-regulated kinases (ERK) and phosphorylated-ERK (p-ERK) were analyzed by immunohistochemical staining.
RESULTS:
Cisplatin treatment induced notable cardiac alteration, as evidenced by changes in cardiac morphology, elevated serum enzymes (P<0.05), ECG abnormalities, and increased left ventricular end-diastolic pressure (P<0.05). Meanwhile, cisplatin significantly increased arterial pulse pressure (P<0.01), primarily due to a decrease in diastolic blood pressure. Severe fibrosis was also observed in the thoracic aorta wall. In vascular ring experiments, cisplatin treatment led to a significant reduction in phenylephrine-induced contraction (P<0.05) and acetylcholine-induced relaxation (P<0.01). Notably, Curcumin co-administration significantly alleviated cisplatin-induced cardiovascular damages, as demonstrated by improvement in these parameters. Furthermore, ERK expression in the myocardium and p-ERK expression in vascular smooth muscle cells were significantly upregulated following curcumin co-treatment.
CONCLUSIONS
Curcumin protects the heart and vasculature from cisplatin-induced damages, likely by upregulating ERK/p-ERK expression. These findings suggest that curcumin may serve as a promising therapeutic strategy for mitigating cisplatin-associated cardiovascular toxicity during tumor chemotherapy. In vitro cell culture experiments are needed to clarify the underlying mechanism.
Animals
;
Curcumin/therapeutic use*
;
Cisplatin/adverse effects*
;
Rats, Sprague-Dawley
;
Male
;
Up-Regulation/drug effects*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Phosphorylation/drug effects*
;
Electrocardiography
;
Blood Pressure/drug effects*
;
Rats
;
MAP Kinase Signaling System/drug effects*
4.Shexiang Tongxin Dropping Pill Improves Stable Angina Patients with Phlegm-Heat and Blood-Stasis Syndrome: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial.
Ying-Qiang ZHAO ; Yong-Fa XING ; Ke-Yong ZOU ; Wei-Dong JIANG ; Ting-Hai DU ; Bo CHEN ; Bao-Ping YANG ; Bai-Ming QU ; Li-Yue WANG ; Gui-Hong GONG ; Yan-Ling SUN ; Li-Qi WANG ; Gao-Feng ZHOU ; Yu-Gang DONG ; Min CHEN ; Xue-Juan ZHANG ; Tian-Lun YANG ; Min-Zhou ZHANG ; Ming-Jun ZHAO ; Yue DENG ; Chang-Jiang XIAO ; Lin WANG ; Bao-He WANG
Chinese journal of integrative medicine 2025;31(8):685-693
OBJECTIVE:
To evaluate the efficacy and safety of Shexiang Tongxin Dropping Pill (STDP) in treating stable angina patients with phlegm-heat and blood-stasis syndrome by exercise duration and metabolic equivalents.
METHODS:
This multicenter, randomized, double-blind, placebo-controlled clinical trial enrolled stable angina patients with phlegm-heat and blood-stasis syndrome from 22 hospitals. They were randomized 1:1 to STDP (35 mg/pill, 6 pills per day) or placebo for 56 days. The primary outcome was the exercise duration and metabolic equivalents (METs) assessed by the standard Bruce exercise treadmill test after 56 days of treatment. The secondary outcomes included the total angina symptom score, Chinese medicine (CM) symptom scores, Seattle Angina Questionnaire (SAQ) scores, changes in ST-T on electrocardiogram and adverse events (AEs).
RESULTS:
This trial enrolled 309 patients, including 155 and 154 in the STDP and placebo groups, respectively. STDP significantly prolonged exercise duration with an increase of 51.0 s, compared to a decrease of 12.0 s with placebo (change rate: -11.1% vs. 3.2%, P<0.01). The increase in METs was significantly greater in the STDP group than in the placebo group (change: -0.4 vs. 0.0, change rate: -5.0% vs. 0.0%, P<0.01). The improvement of total angina symptom scores (25.0% vs. 0.0%), CM symptom scores (38.7% vs. 11.8%), reduction of nitroglycerin consumption (100.0% vs. 11.3%), and all domains of SAQ, were significantly greater with STDP than placebo (all P<0.01). The changes in Q-T intervals at 28 and 56 days from baseline were similar between the two groups (both P>0.05). Twenty-five participants (16.3%) with STDP and 16 (10.5%) with placebo experienced AEs (P=0.131), with no serious AEs observed.
CONCLUSION
STDP could improve exercise tolerance in patients with stable angina and phlegm-heat and blood stasis syndrome, with a favorable safety profile. (Registration No. ChiCTR-IPR-15006020).
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Angina, Stable/physiopathology*
;
Aged
;
Syndrome
;
Treatment Outcome
;
Placebos
;
Tablets
5.Integrated evidence chain-based effectiveness evaluation of traditional Chinese medicines (Eff-iEC): A demonstration study.
Ye LUO ; Xu ZHAO ; Ruilin WANG ; Xiaoyan ZHAN ; Tianyi ZHANG ; Tingting HE ; Jing JING ; Jianyu LI ; Fengyi LI ; Ping ZHANG ; Junling CAO ; Jinfa TANG ; Zhijie MA ; Tingming SHEN ; Shuanglin QIN ; Ming YANG ; Jun ZHAO ; Zhaofang BAI ; Jiabo WANG ; Aiguo DAI ; Xiangmei CHEN ; Xiaohe XIAO
Acta Pharmaceutica Sinica B 2025;15(2):909-918
Addressing the enduring challenge of evaluating traditional Chinese medicines (TCMs), the integrated evidence chain-based effectiveness evaluation of TCMs (Eff-iEC) has emerged. This paper explored its capacity through a demonstration study that evaluated the effectiveness evidence of six commonly used anti-hepatic fibrosis Chinese patent medicines (CPMs), including Biejiajian Pill (BP), Dahuang Zhechong Pill (DZP), Biejia Ruangan Compound (BRC), Fuzheng Huayu Capsule (FHC), Anluo Huaxian Pill (AHP), and Heluo Shugan Capsule (HSC), using both Eff-iEC and the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system. The recognition of these CPMs within the TCM academic community was also assessed through their inclusion in relevant medical documents. Results showed that the evidence of BRC and FHC received higher assessments in both Eff-iEC and GRADE system, while the assessments for others varied. Analysis of community recognition revealed that Eff-iEC more accurately reflects the clinical value of these CPMs, exhibiting superior evaluative capabilities. By breaking through the conventional pattern of TCMs effectiveness evaluation, Eff-iEC offers a novel epistemology that better aligns with the clinical realities and reasoning of TCMs, providing a coherent methodology for clinical decision-making, new drug evaluations, and health policy formulation.
6.Research progress of cerebral organoid technology and its application in stroke treatment
Kexin SUN ; Yuqian XIAO ; Jun WAN ; Shuying CHEN ; Limin CHEN ; Yan WANG ; Yanjie BAI
Tianjin Medical Journal 2024;52(1):38-43
Cerebral organoids are three-dimensional nerve cultures induced by embryonic stem cells(ESCs)or induced pluripotent stem cells(iPSCs)that mimic the structure and function of human brain.With the continuous optimization of cerebral organoid culture technology and the combination with emerging technologies such as organ transplantation,gene editing and organoids-on-chip,complex brain tissue structures such as functional vascular structures and neural circuits have been produced,which provides new methods and ideas for studying human brain development and diseases.This article reviews the latest advances in brain organoid technology,describes its application in neurological diseases and advances in stroke modeling and transplantation treatment.
7.Research progress of RNA m6A methylation in post-stroke cognitive impairment
Yuqian XIAO ; Kexin SUN ; Jun WAN ; Shuying CHEN ; Limin CHEN ; Yan WANG ; Yanjie BAI
Tianjin Medical Journal 2024;52(3):331-336
Post-stroke cognitive impairment(PSCI)is mainly manifested as learning and memory disorders.Highly enriched RNA m6A methylation modification in mammalian brain is involved in glial cell-mediated neuroinflammation.Given that neuroinflammation is the main mechanism for neural damage and spatial and memory impairment of PSCI,it is speculated that RNA m6A methylation modification can regulate the inflammatory response of glial cells after stroke to improve PSCI.This review summarizes and analyzes the role of RNA m6A methylation modification in the development of PSCI and analyzes its detailed mechanism of regulating glial cell-mediated inflammation,which will provide reference for researchers in this field.
8.Mechanism of action and related signaling pathways of long non-coding RNAs in neuroimmuno-inflammatory response after ischemic stroke
Jun WAN ; Yanjie BAI ; Yan WANG ; Shuying CHEN ; Limin CHEN ; Yuqian XIAO ; Kexin SUN
Chinese Journal of Tissue Engineering Research 2024;28(20):3265-3271
BACKGROUND:Long non-coding RNAs(lncRNAs),as important regulators of the inflammatory response,are involved in the immune-inflammation-brain crosstalk mechanism after ischemic stroke and have the potential to become a therapeutic agent for neurological dysfunction after ischemic stroke. OBJECTIVE:To analyze and summarize the molecular mechanism of lncRNA acting on glial cells involved in the neuroimmuno-inflammatory cascade response after ischemic stroke and the associated signaling pathways,pointing out that lncRNAs have the potential to regulate inflammation after ischemic stroke. METHODS:PubMed was searched using the search terms of"ischemic stroke,long non-coding RNA,neuroinflammation,immune function,signal pathway,microglia,astrocytes,oligodendrocyte,mechanism,"and 63 relevant documents were finally included for review. RESULTS AND CONCLUSION:In the early stage of ischemic stroke,the death of nerve cells due to ischemia and hypoxia activates the innate immune response of the brain,promoting the secretion of inflammatory factors and inducing blood-brain barrier damage and a series of inflammatory cascades responses.As an important pathogenesis factor in ischemic stroke,the neuroimmuno-inflammatory cascade has been proved to seriously affect the prognosis of patients with ischemic stroke,and it needs to be suppressed promptly in the early stage.Neuroinflammation after ischemic stroke usually induces abnormal expression of a large number of lncRNAs that mediate a series of neuro-immune-inflammatory crosstalk mechanisms through regulating the polarization of microglia,astrocytes and oligodendrocytes to exert post-stroke neuroprotective effects.LncRNAs,as important regulatory factors of the inflammatory response,inhibit the neuroimmuno-inflammatory cascade response after ischemic stroke through regulating nuclear factor-κB,lncRNA-miRNA-mRNA axis,Rho-ROCK,MAPK,AKT,ERK and other signaling pathways to effectively improve neurological impairment after ischemic stroke.Most of experimental studies on the interaction between lncRNAs and ischemic stroke are based on a middle cerebral artery occlusion model or a cerebral ischemia-reperfusion injury model,but no clinical trials have been conducted.Therefore,it remains to be further explored about whether lncRNAs can be safely applied in clinical practice.At present,there are many therapeutic drugs for the treatment of ischemic stroke,but there are relatively few studies on the application of lncRNAs,exosomes and other transplantation technologies for the treatment of ischemic stroke using tissue engineering technology,which need to be further explored.lncRNA has become an important target for the treatment of ischemic stroke with its relative stability and high specificity.In future studies,more types of inflammatory lncRNAs that function under ischemic-hypoxia conditions should continue to be explored,in order to provide new research directions for the treatment of neuroinflammation after ischemic stroke.
9.Elemene Antitumor Drugs Development Based on "Molecular Compatibility Theory" and Clinical Application: A Retrospective and Prospective Outlook.
Xiao-Ying JIANG ; Li-Ping SHI ; Jun-Long ZHU ; Ren-Ren BAI ; Tian XIE
Chinese journal of integrative medicine 2024;30(1):62-74
Elemene, derived from Curcuma wenyujin, one of the "8 famous genuine medicinal materials of Zhejiang province," exhibits remarkable antitumor activity. It has gained wide recognition in clinical practice for effectiveness on tumors. Dr. XIE Tian, introduced the innovative concept of "molecular compatibility theory" by combining Chinese medicine principles, specifically the "monarch, minister, assistant, and envoy" theory, with modern biomedical technology. This groundbreaking approach, along with a systematic analysis of Chinese medicine and modern biomedical knowledge, led to the development of elemene nanoliposome formulations. These novel formulations offer numerous advantages, including low toxicity, well-defined composition, synergistic effects on multiple targets, and excellent biocompatibility. Following the principles of the "molecular compatibility theory", further exploration of cancer treatment strategies and methods based on elemene was undertaken. This comprehensive review consolidates the current understanding of elemene's potential antitumor mechanisms, recent clinical investigations, advancements in drug delivery systems, and structural modifications. The ultimate goal of this review is to establish a solid theoretical foundation for researchers, empowering them to develop more effective antitumor drugs based on the principles of "molecular compatibility theory".
Humans
;
Retrospective Studies
;
Antineoplastic Agents/therapeutic use*
;
Neoplasms/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Sesquiterpenes/therapeutic use*
10.Chemical constituents from stems and leaves of Lonicera confusa and their anti-inflammatory activities
Xiao-Hua JIANG ; Yu-Lu WEI ; Jun BAI ; Xiao-Jie YAN ; Dian-Peng LI ; Feng-Lai LU
Chinese Traditional Patent Medicine 2024;46(2):484-489
AIM To study the chemical constituents and their anti-inflammatory activities of stems and leaves of Lonicera confusa DC.METHODS The 80%methanol extract from stems and leaves of L.confusa DC was isolated and purified by Diaion HP20SS,Sephadex LH-20,HSCCC and preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.Their anti-inflammatory activities were evaluated by measuring NO production of LPS-stimulated RAW264.7 cells in vitro.RESULTS Thirteen compounds were isolated and identified as benzyl alcohol-O-β-D-glucopyranosyl-(1 →6)-β-D-glucopyranoside(1),sweroside(2),epi-vogeloside(3),vogeloside(4),secologanoside(5),secoxyloganin(6),secologanin dimethyl acetal(7),methyl chlorogenate(8),apigenin-7-O-β-D-glucopyranoside(9),luteolin-7-O-β-D-glucopyranoside(10),rhoifolin(11),luteolin-7-O-α-L-arabinopyranosyl(1→6)-β-D-glucopyranoside(12),and lonicerin(13).Compounds 2-8,11-13 inhibited the NO production of LPS-induced cells.CONCLUSION Compound 1 is first isolated from family Lonicera,compounds 3,5,7,9,11,and 12 are obtained from the stems and leaves of this plant for the first time.Compounds 2-8,11-13 exhibited anti-inflammatory activities.

Result Analysis
Print
Save
E-mail