1.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
2.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
3.Hepatocyte Nuclear Factor 4α Transcriptionally Activates TM4SF5 Through The DR1 Motif
Yi-Ming GUO ; Xiao-Fei ZHANG ; Han FENG ; Li ZHENG
Progress in Biochemistry and Biophysics 2025;52(5):1241-1251
ObjectiveHepatocyte nuclear factor 4-alpha (HNF4A) is a critical transcription factor in the liver and pancreas. Dysfunctions of HNF4A lead to maturity onset diabetes of the young 1 (MODY1). Notably, MODY1 patients with HNF4A pathogenic mutations exhibit decreased responses to arginine and reduced plasma triglyceride levels, but the mechanisms remain unclear. This study aims to investigate the potential target genes transcriptionally regulated by HNF4A and explore its role in these metabolic pathways. MethodsA stable 293T cell line expressing the HNF1A reporter was overexpressed with HNF4A. RNA sequencing (RNA-seq) was performed to analyze transcriptional differences. Transcription factor binding site prediction was then conducted to identify HNF4A binding motifs in the promoter regions of relevant target genes. ResultsRNA-seq results revealed a significant upregulation of transmembrane 4 L six family member 5 (TM4SF5) mRNA in HNF4A-overexpressing cells. Transcription factor binding predictions suggested the presence of five potential HNF4A binding motifs in the TM4SF5 promoter. Finally, we confirmed that the DR1 site in the -57 to -48 region of the TM4SF5 promoter is the key binding motif for HNF4A. ConclusionThis study identified TM4SF5 as a target gene of HNF4A and determined the key binding motif involved in its regulation. Given the role of TM4SF5 as an arginine sensor in mTOR signaling activation and triglyceride secretion, which closely aligns with phenotypes observed in MODY1 patients, our findings provide novel insights into the possible mechanisms by which HNF4A regulates triglyceride secretion in the liver and arginine-stimulated insulin secretion in the pancreas.
4.Banxia Xiexin Decoction suppresses malignant phenotypes of colon cancer cells via PARG/PARP1/NF-κB signaling pathway.
Yu-Qing HUANG ; Jia-Mei WANG ; Heng-Zhou LAI ; Chong XIAO ; Feng-Ming YOU ; Qi-Xuan KUANG ; Yi-Fang JIANG
China Journal of Chinese Materia Medica 2025;50(2):496-506
This study aims to delve into the influences and underlying mechanisms of Banxia Xiexin Decoction(BXD) on the proliferation, apoptosis, invasion, and migration of colon cancer cells. Firstly, the components of BXD in blood were identified by UPLC-MS/MS, and subsequently the content of these components were determined by HPLC. Then, different concentrations of BXD were used to treat both the normal intestinal epithelial cells(NCM460) and the colon cancer cells(HT29 and HCT116). The cell viability and apoptosis were examined by the cell counting kit-8(CCK-8) and flow cytometry, respectively. Western blot was employed to determine the expression of the apoptosis regulators B-cell lymphoma-2(Bcl-2) and Bcl-2-associated X(Bax). The cell wound healing assay and Transwell assay were employed to measure the cell migration and invasion, respectively. Additionally, Western blot was employed to determine the expression levels of epithelial-mesenchymal transition(EMT)-associated proteins, including epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), and vimentin. The protein and mRNA levels of the factors in the poly(ADP-ribose) glycohydrolase(PARG)/poly(ADP-ribose) polymerase 1(PARP1)/nuclear factor kappa-B p65(NF-κB p65) signaling pathway were determined by Western blot and RT-qPCR, respectively. The results demonstrated that following BXD intervention, the proliferation of HT29 and HCT116 cells was significantly reduced. Furthermore, BXD promoted the apoptosis, enhanced the expression of Bcl-2, and suppressed the expression of Bax in colon cancer cells. At the same time, BXD suppressed the cell migration and invasion and augmented the expression of E-cadherin while diminishing the expression of N-cadherin and vimentin. In addition, BXD down-regulated the protein and mRNA levels of PARG, PARP1, and NF-κB p65. In conclusion, BXD may inhibit the malignant phenotypes of colon cancer cells by mediating the PARG/PARP1/NF-κB signaling pathway.
Colonic Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Phenotype
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Apoptosis
;
Cell Movement/drug effects*
;
Neoplasm Invasiveness
;
HCT116 Cells
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Humans
;
Poly (ADP-Ribose) Polymerase-1
;
Glycoside Hydrolases
;
bcl-2-Associated X Protein
;
NF-kappa B p50 Subunit
5.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
6."Component-effect" correlations in traditional Chinese medicine from holistic view: taking discovery of gintonin from ginseng as an example.
Xin-Ming YU ; Chen-Yu YU ; Hua-Ying WANG ; Wei-Sheng YUE ; Zhu-Bin ZHANG ; Wei WU ; Xiao-Bin JIA ; Bing YANG ; Liang FENG
China Journal of Chinese Materia Medica 2025;50(7):2001-2012
The holistic view is the key in the study of traditional Chinese medicine(TCM). The component structure theory is based on the holistic view to investigate the correlation between material basis and efficiency, which enriches the holistic "component-effect" research of TCM. Gintonin is a newly isolated non-saponin component of ginseng. Compared to ginsenosides, gintonin has many different pharmacological activities, and it provides new knowledge for the holistic research of ginseng. Thus, taking the discovery of gintonin from ginseng as an example, this paper explored the linkage between ginsenosides and gintonin from the perspective of "component-effect" correlations and systematically sorted out the similarities and differences between them in terms of structural characteristics, modes of action, and pharmacological activities. Starting from the collaborative interaction of TCM compounds, the study discussed the application and value of the holistic view in TCM "component-effect" research in the light of the component structure theory to provide new thoughts for the development of modern TCM research.
Panax/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Medicine, Chinese Traditional
;
Humans
;
Ginsenosides/pharmacology*
;
Animals
7.Digital identification of Cervi Cornu Pantotrichum based on HPLC-QTOF-MS~E and Adaboost.
Xiao-Han GUO ; Xian-Rui WANG ; Yu ZHANG ; Ming-Hua LI ; Wen-Guang JING ; Xian-Long CHENG ; Feng WEI
China Journal of Chinese Materia Medica 2025;50(5):1172-1178
Cervi Cornu Pantotrichum is a precious animal-derived Chinese medicinal material, while there are often adulterants derived from animals not specified in the Chinese Pharmacopeia in the market, which disturbs the safety of medication. This study was conducted with the aim of strengthening the quality control of Cervi Cornu Pantotrichum and standardizing the medication. To achieve digital identification of Cervi Cornu Pantotrichum from different sources, a digital identification model was constructed based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS~E) combined with an adaptive boosting algorithm(Adaboost). The young furred antlers of sika deer, red deer, elk, and reindeer were processed and then subjected to polypeptide analysis by UHPLC-QTOF-MS~E. Then, the mass spectral data reflecting the polypeptide information were obtained by digital quantification. Next, the key data were obtained by feature screening based on Gini index, and the digital identification model was constructed by Adaboost. The model was evaluated based on the recall rate, F_1 composite score, and accuracy. Finally, the results of identification based on the constructed digital identification model were validated. The results showed that when the Gini index was used to screen the data of top 100 characteristic polypeptides, the digital identification model based on Adaboost had the best performance, with the recall rate, F_1 composite score, and accuracy not less than 0.953. The validation analysis showed that the accuracy of the identification of the 10 batches of samples was as high as 100.0%. Therefore, based on UHPLC-QTOF-MS~E and Adaboost algorithm, the digital identification of Cervi Cornu Pantotrichum can be realized efficiently and accurately, which can provide reference for the quality control and original animal identification of Cervi Cornu Pantotrichum.
Animals
;
Algorithms
;
Antlers/chemistry*
;
Boosting Machine Learning Algorithms
;
Chromatography, High Pressure Liquid/methods*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Quality Control
;
Reindeer
;
Tandem Mass Spectrometry/methods*
;
Tissue Extracts/analysis*
8.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
9.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
10.Correlation between differences in starch gelatinization, water distribution, and terpenoid content during steaming process of Curcuma kwangsiensis root tubers by multivariate statistical analysis.
Yan LIANG ; Meng-Na YANG ; Xiao-Li QIN ; Zhi-Yong ZHANG ; Zhong-Nan SU ; Hou-Kang CAO ; Ke-Feng ZHANG ; Ming-Wei WANG ; Bo LI ; Shuo LI
China Journal of Chinese Materia Medica 2025;50(10):2684-2694
To elucidate the mechanism by which steaming affects the quality of Curcuma kwangsiensis root tubers, methods such as LSCM, RVA, dual-wavelength spectrophotometry, LF-NMR, and LC-MS were employed to qualitatively and quantitatively detect changes in starch gelatinization characteristics, water distribution, and material composition of C. kwangsiensis root tubers under different steaming durations. Based on multivariate statistical analysis, the correlation between differences in gelatinization parameters, water distribution, and terpenoid material composition was investigated. The results indicate that steaming affects both starch gelatinization and water distribution in C. kwangsiensis. During the steaming process, transformations occur between amylose and amylopectin, as well as between semi-bound water and free water. After 60 min of steaming, starch gelatinization and water distribution reached an equilibrium state. The content of amylopectin, the amylose-to-amylopectin ratio, and parameters such as gelatinization temperature, viscosity, breakdown value, and setback value were significantly correlated(P≤0.05). Additionally, the amylose-to-amylopectin ratio was significantly correlated with total free water and total water content(P≤0.05). Steaming induced differences in the material composition of C. kwangsiensis root tubers. Clustering of primary metabolites in the OPLS-DA model was distinct, while secondary metabolites were classified into 9 clusters using the K-means clustering algorithm. Differential terpenoid metabolites such as(-)-α-curcumene were significantly correlated with zerumbone, retinal, and all-trans-retinoic acid(P<0.05). Curcumenol was significantly correlated with isoalantolactone and ursolic acid(P<0.05), while all-trans-retinoic acid was significantly correlated with both zerumbone and retinal(P<0.05). Alpha-tocotrienol exhibited a significant correlation with retinal and all-trans-retinoic acid(P<0.05). Amylose was extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and α-tocotrienol(P<0.05). Amylopectin was significantly correlated with zerumbone(P<0.05) and extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and 9-cis-retinoic acid(P<0.01). The results provide scientific evidence for elucidating the mechanism of quality formation of steamed C. kwangsiensis root tubers as a medicinal material.
Curcuma/chemistry*
;
Starch/chemistry*
;
Multivariate Analysis
;
Water/chemistry*
;
Terpenes/analysis*
;
Plant Roots/chemistry*
;
Plant Tubers/chemistry*
;
Drugs, Chinese Herbal/chemistry*

Result Analysis
Print
Save
E-mail