1.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
2.Study on The Detection Method of Fat Infiltration in Muscle Tissue Based on Phase Angle Electrical Impedance Tomography
Wu-Guang XIAO ; Xiao-Peng ZHU ; Hui FENG ; Bo SUN ; Tong ZHAO ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2025;52(10):2663-2676
ObjectiveFat infiltration has been shown to be closely related to muscle mass loss and a variety of muscle diseases. This study proposes a method based on phase-angle electrical impedance tomography (ΦEIT) to visualize the electrical characteristic response caused by muscle fat infiltration, aiming to provide a new technical means for early non-invasive detection of muscle mass deterioration. MethodsThis study was divided into two parts. First, a laboratory pork model was constructed to simulate different degrees of fat infiltration by injecting1 ml or 2 ml of emulsified fat solution into different muscle compartments, and the phase angle images were reconstructed using ΦEIT. Second, a human experiment was conducted to recruit healthy subjects (n=8) from two age groups (20-25 years old and 26-30 years old). The fat content percentage ηfat of the left and right legs was measured by bioelectrical impedance analysis (BIA), and the phase angle images of the left and right calves were reconstructed using ΦEIT. The relationship between the global average phase angle ΦM and the spatial average phase angle ΦMi of each muscle compartment and fat infiltration was further analyzed. ResultsIn the laboratory pork model, the grayscale value of the image increased with the increase of ηfat and ΦM showed a downward trend. The results of human experiments showed that at the same fat content percentage, the ΦM of the 26-30-year-old group was about 20%-35% lower than that of the 20-25-year-old group. The fat content percentage was significantly negatively correlated with ΦM. In addition, the M2 (soleus) compartment was most sensitive to fat infiltration, and the spatial average phase angles of the M2 (soleus), M3 (tibialis posterior and flexor digitorum longus), and M4 (tibialis anterior, extensor digitorum longus, and peroneus longus) compartments all showed significant inter-group differences. ConclusionΦEIT imaging can effectively distinguish different degrees of fat infiltration, especially in deep, small or specially located muscles, showing high sensitivity, demonstrating the potential application of this method in local muscle mass monitoring and early non-invasive diagnosis.
3.Clinical study on the effectiveness of bone acupuncture for alleviating pain and improving function in patients with degenerative lumbar spinal stenosis.
Chang-Xiao HAN ; Min-Shan FENG ; Jing-Hua GAO ; Xun-Lu YIN ; Guang-Wei LIU ; Hai-Bao WEN ; Jing LI ; Bo-Chen PENG ; Li-Guo ZHU
China Journal of Orthopaedics and Traumatology 2025;38(2):152-156
OBJECTIVE:
To assess the effectiveness of bone acupuncture in improving pain and function in degenerative lumbar spinal stenosis (DLSS) and compare it with Jiaji acupuncture.
METHODS:
From January to December 2023, 80 DLSS patients were treated with acupuncture and divided into bone acupuncture and Jiaji acupuncture groups. Among them, 40 patients in the bone acupuncture group included 15 males and 25 females, with a mean age of (60.60±6.98) years old;anthor 40 patients in the Jiaji acupuncture group included 16 males and 24 females, with a mean age of (61.48±9.55) years old. The Roland Morris disability questionnaire(RMDQ), walking distance, visual analogue scale(VAS), and the MOS item short from health survey(SF-36) of two groups at baseline, 2 weeks, 4 weeks, and 12 weeks post-treatment were compared.
RESULTS:
Eighty patients were followed up for 3 to 5 months with an average of (3.62±0.59) months. There was no significant differences in general data and the scores before treatment between two groups(P>0.05). The RMDQ scores in both groups decreased significantly at 2, 4 and 12 weeks after treatment compared with before treatment(P<0.05), at each time point after treatment, the decrease was more significant in the bone acupuncture group than in the Jiaji acupuncture group(P<0.05). The VAS of waist and leg in both groups was significantly lower at 2, 4 and 12 weeks after treatment that before treatment(P<0.05). At all time points after treatment, the waist VAS in the bone acupuncture group was reduced more significant than in the Jiaji acupuncture group(P<0.05);there was no significant difference in leg VAS at 2 and 12 weeks after treatment between two groups(P>0.05), the improvement was more significant in the bone acupuncture group in the 4 weeks after treatment than in the Jiaji acupuncture group. The SF-36 scores in both groups were significantly higher at 2, 4, and 12 weeks after treatment than before treatment(P<0.05);the SF-36 score raised more significant in the bone acupuncture group than in the Jiaji acupunture group(P<0.05). No significant difference in the walking distance between two groups at 2 weeks after treatment(P>0.05);the walking distance in the bone acupuncture group was significantly higher than that in the Jiaji acupuncture group at 4 and 12 weeks after treatment(P<0.05).
CONCLUSION
Bone-penetrating acupuncture moderately improves functional impairment, pain, and quality of life in patients with DLSS, showing better efficacy than Jiaji acupuncture.
Humans
;
Female
;
Male
;
Middle Aged
;
Acupuncture Therapy/methods*
;
Spinal Stenosis/physiopathology*
;
Aged
;
Lumbar Vertebrae/physiopathology*
;
Pain Management
4.Effects of Yishen Yangsui formula() on pyroptosis in the spinal cord tissue in rats with degenerative cervical myelopathy.
Guo-Liang MA ; He YIN ; Bo XU ; Min-Shan FENG ; Dan ZHANG ; Dian ZHANG ; Xiao-Kuan QIN ; Li-Guo ZHU ; Bo-Wen YANG ; Xin CHEN
China Journal of Orthopaedics and Traumatology 2025;38(5):532-539
OBJECTIVE:
To preliminarily investigate the effects and mechanism of action of Yishen Yangsui Formula (, YSYSF)on the recovery of neurological function in rats with degenerative cervical myelopathy.
METHODS:
Fifty adult SD female rats were randomly divided into control group, sham group, model group, YSYSF group and positive drug group by using randomized numerical table method. In the model group, YSYSF group and positive drug group, polyvinyl alcohol acrylamide interpenetrating network hydrogel(water-absorbent swelling material) was used to construct a rat spinal cord chronic compression model. The sham group was implanted with the water-absorbent swelling material and then removed without causing spinal cord compression. The control group, the sham group and the model group were given equal amounts of saline by gavage, the group of YSYSF was given Chinese herbal medicine soup by gavage 9.1 g·kg-1 once a day, and the positive drug group was given tetrahexylsalicylglucoside sodium monosialate ganglioside by intraperitoneal injection 4.2 mg·kg-1 once a day. The motor function of the rats was assessed by the BBB method after 1, 3, 7, and 14 d of drug administration. The spinal cord tissues were taken from rats executed 14 d after drug administration, and the morphological changes of the spinal cord compression site were observed by HE staining, and the expression levels of Caspase-1, GSDMD, NLRP3, PYCARD, IL-1β, and IL-18 were detected in the area of spinal cord injury by Western blot method.
RESULTS:
The BBB scores of the control group and the sham group were normal at all time points after modeling, which were higher than the BBB scores of the model group, the YSYSF, and the positive drug group (P<0.05). From the 3rd day after gavage, at all time points, the BBB scores of rats in the YSYSF group and the positive drug group were higher than those of rats in the model group (P<0.05). The staining pattern of HE spinal cord tissue was normal in the control group and the sham group, and the HE spinal cord in the model group was severely damaged with a large number of neuron deaths, whereas the damage to the spinal cord and neuron cells was reduced in the YSYSF group and the positive drug group. The expression levels of caspase-1, GSDMD, NLRP3, PYCARD, IL-1β and IL-18 in the spinal cord of the model group were significantly higher than those of the sham group (P<0.0001), and the expression levels of caspase-1, GSDMD, NLRP3, PYCARD, IL-1β, and IL-18 in the YSYSF group and the drug group were significantly lower than those in the model group (P<0.05).
CONCLUSION
YSYSF can improve the motor function of rats with degenerative cervical spinal cord disease, alleviate the pathological changes, and promote the recovery of spinal cord neurological function. The specific mechanism may be related to the inhibition of the activation of inflammatory vesicles NLRP3 and PYCARD, the reduction of the release of inflammatory factors IL-1β and IL-18, the reduction of the expression of caspase-1 and GSDMD, the reduction of cellular death, and the inhibition of inflammatory response.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Rats, Sprague-Dawley
;
Pyroptosis/drug effects*
;
Spinal Cord/pathology*
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Spinal Cord Diseases/drug therapy*
;
Interleukin-1beta/metabolism*
5.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
6.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
7.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
8.SOX11-mediated CBLN2 Upregulation Contributes to Neuropathic Pain through NF-κB-Driven Neuroinflammation in Dorsal Root Ganglia of Mice.
Ling-Jie MA ; Tian WANG ; Ting XIE ; Lin-Peng ZHU ; Zuo-Hao YAO ; Meng-Na LI ; Bao-Tong YUAN ; Xiao-Bo WU ; Yong-Jing GAO ; Yi-Bin QIN
Neuroscience Bulletin 2025;41(12):2201-2217
Neuropathic pain, a debilitating condition caused by dysfunction of the somatosensory nervous system, remains difficult to treat due to limited understanding of its molecular mechanisms. Bioinformatics analysis identified cerebellin 2 (CBLN2) as highly enriched in human and murine proprioceptive and nociceptive neurons. We found that CBLN2 expression is persistently upregulated in dorsal root ganglia (DRG) following spinal nerve ligation (SNL) in mice. In addition, transcription factor SOX11 binds to 12 cis-regulatory elements within the Cbln2 promoter to enhance its transcription. SNL also induced SOX11 upregulation, with SOX11 and CBLN2 co-localized in nociceptive neurons. The siRNA-mediated knockdown of Sox11 or Cbln2 attenuated SNL-induced mechanical allodynia and thermal hyperalgesia. High-throughput sequencing of DRG following intrathecal injection of CBLN2 revealed widespread gene expression changes, including upregulation of numerous NF-κB downstream targets. Consistently, CBLN2 activated NF-κB signaling, and inhibition with pyrrolidine dithiocarbamate reduced CBLN2-induced pain hypersensitivity, proinflammatory cytokines and chemokines production, and neuronal hyperexcitability. Together, these findings identified the SOX11/CBLN2/NF-κB axis as a critical mediator of neuropathic pain and a promising target for therapeutic intervention.
Animals
;
Neuralgia/metabolism*
;
Ganglia, Spinal/metabolism*
;
Up-Regulation
;
Mice
;
NF-kappa B/metabolism*
;
SOXC Transcription Factors/genetics*
;
Male
;
Neuroinflammatory Diseases/metabolism*
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins/genetics*
;
Hyperalgesia/metabolism*
;
Signal Transduction
;
Spinal Nerves
9.Inhibition of KLK8 promotes pulmonary endothelial repair by restoring the VE-cadherin/Akt/FOXM1 pathway.
Ying ZHAO ; Hui JI ; Feng HAN ; Qing-Feng XU ; Hui ZHANG ; Di LIU ; Juan WEI ; Dan-Hong XU ; Lai JIANG ; Jian-Kui DU ; Ping-Bo XU ; Yu-Jian LIU ; Xiao-Yan ZHU
Journal of Pharmaceutical Analysis 2025;15(4):101153-101153
Image 1.
10.NFKBIE: Novel Biomarkers for Diagnosis, Prognosis, and Immunity in Colorectal Cancer: Insights from Pan-cancer Analysis.
Chen Yang HOU ; Peng WANG ; Feng Xu YAN ; Yan Yan BO ; Zhen Peng ZHU ; Xi Ran WANG ; Shan LIU ; Dan Dan XU ; Jia Jia XIAO ; Jun XUE ; Fei GUO ; Qing Xue MENG ; Ren Sen RAN ; Wei Zheng LIANG
Biomedical and Environmental Sciences 2025;38(10):1320-1325

Result Analysis
Print
Save
E-mail