1.Interpretation of the radiologist training system in Canada and enlightenment
Jingyu ZHONG ; Yue XING ; Yangfan HU ; Defang DING ; Xianwei LIU ; Qinghua MIN ; Zhengguang XIAO ; Caisong ZHU ; Dandan SHI ; Xiaoyu FAN ; Jingshen CHU ; Huan ZHANG ; Weiwu YAO
Chinese Journal of Medical Education Research 2024;23(9):1210-1216
This paper aims to discuss the ideas and experience about the radiology residency training system of Canada with a presentation of its base accreditation standards for five aspects, competency goals for seven roles, four stages of training arrangement, and two types of final assessment questions. Although the Canada's radiology residency program differs from China's standardized resident and specialist training programs for radiology, there are still several points that are worth referencing, including emphasizing the training priority of competency goals, providing a specific basis for the stratification of training, offering clear guidance for the implementation of training content, and improving assessment methods to focus on competency goals. These points are of great value for improving the standardized radiology resident and specialist training programs in China, so as to provide a reference for the training of excellent radiologists in China.
2.Establishment of UPLC-DAD fingerprint of raw and vinegar Bupleurum bupleurum and study on spectral effect relationship of anti-hepatic fibrosis
Ni-Ping CHEN ; Yan WANG ; Yan DONG ; Yang-Xin XIAO ; Ji-Yuan TU ; Yan-Ju LIU ; Zhong-Shi ZHOU
Chinese Pharmacological Bulletin 2024;40(6):1145-1152
Aim To establish the fingerprint of raw bupleurum and vinegar bupleurum,investigate the difference in their anti-liver fibrosis effects,and ex-plore the relationship between the chemical composition of raw bupleurum and vinegar bupleurum and their an-ti-liver fibrosis efficacy.Methods The fingerprints of 10 batches of raw bupleuri and 10 batches of bupleuri were established by UPLC method.The liver fibrosis cell model in vitro was established by TGF-β induced LX-2 hepatic stellate cells.The liver fibrosis cell mod-el was analyzed with collagen type Ⅰ(col1a1)and α-smoothmuscleactin.The expression of α-SMA protein was used as the pharmacodynamic index.MetaboAna-lyst5.0 was used to screen the difference markers af-fecting the quality of raw bupledges and vinegar bu-pledges with VIP value>1 as the criterion.Orthogo-nal partial least squares discriminant analysis(OPLS-DA)was used to screen the main components of raw bupleurum and vinegar bupleurum against liver fibro-sis.Results There were 18 peaks in the UPLC fin-gerprints of raw bupleurum and vinegar bupleurum,and the analysis results showed that there were nine main differences between raw bupleurum and vinegar bupleurum,among which peaks 9,7 and 6 could be considered as bupleurin d,bupleurin a and bupleurin f.The results of spectral effect relationship showed that the main components of bupleurum anti-liver fibrosis were peaks 11,12,14,15 and 18.Conclusions The established fingerprint method of raw bupleurum and vinegar bupleurum is simple and feasible,and the important components of anti-liver fibrosis activity are screened through the spectrum effect relationship,which provides a basis for clarifying the material basis of anti-liver fibrosis effect of raw bupleurum and vine-gar bupleurum.
3.A Novel Trifluoromethyl Quinazoline Compound Inhibits Drug-resistant Glioblastoma Cells Proliferation
Xiao-Zhong CHEN ; Shi-Nan WEI ; Heng LUO ; Peng ZHANG ; Ping SUN ; Bao-Fei SUN
Chinese Journal of Biochemistry and Molecular Biology 2024;40(9):1250-1261
The current treatment of glioma is facing drug resistance,which limits the efficacy of traditional chemotherapy drugs.This study aims to explore the potential mechanisms of the trifluoromethylquinazoline compound(KZL204)against glioma.Through the Cell Counting Kit-8(CCK-8)assay,we found that KZL204 significantly inhibits the growth of drug-resistant cancer cells,with a 48-hour half-maximal inhibitory concentration(IC50)of 3.63±0.38 μmol/L,which is significantly better than the positive control drug temozolomide(TMZ)(IC50 value of 81.67±5.49 μmol/L).Additionally,flow cytometry analysis showed that KZL204 treatment significantly increased the apoptosis rate of drug-resistant tumor cells and arrested the cell cycle at the G2/M phase.At the same time,the Transwell assay confirmed the inhibitory effect of KZL204 on the migration and invasion of drug-resistant cancer cells.Transcriptome analysis revealed 2 435 differentially expressed genes in drug-resistant cancer cells treated with KZL204,of which 1 320 were upregulated,and 1 115 were downregulated.KEGG and GO enrichment analysis showed that these differential genes were significantly enriched in apoptosis-related signaling pathways.Further bioinformatics prediction and Venn diagram analysis identified 35 potential core targets,with the PI3K-AKT signaling pathway being the most significant among the differentially expressed genes.Quantitative real-time PCR(RT-qPCR)experiments confirmed the downregulating effects of KZL204 on genes such as CREB3L1,CSF1,CXCL5,BCL3,and the upregulating effects on genes like FOS,LT A,PTGS2,MAP2K3.Immunoblotting experiments at the protein level also confirmed the impact of KZL204 on the expression of apoptotic proteins,including the upregulation of Bax,cleaved Caspase-3 protein,and the downregulation ofAKT,Bcl-2,Caspase-3,and Caspase-8 protein expression.In summary,KZL204 significantly inhibits the growth and metastasis of drug-resistant glioblastoma and induces apoptosis and cell cycle arrest by regulating the PI3K-AKT and apoptosis-related signaling pathways,demonstrating its potential as a candidate drug against drug-resistant glioma.
4.FLASH Interacts with Promyelocytic Leukemia Protein Ⅳ(PML Ⅳ)and Enhances the SUMOylation of p53
Meng-Ni WANG ; Zhen-Zhen XIONG ; Zhi-Ying WANG ; Jian-Hua WU ; Xiao-Zhong SHI
Chinese Journal of Biochemistry and Molecular Biology 2024;40(10):1426-1440
As a unique gene in the genome,FLASH(FADD-like interleukin-1β-converting enzyme asso-ciated huge protein)/CASP8AP2 is involved in multiple cellular processes,including apoptosis,histone gene pre-mRNA processing,transcriptional regulation,and cell cycle progression.Clinical studies have shown that FLASH is a valuable prognostic marker for acute lymphoblastic leukemia,and a crucial factor for the survival of various cancer cells.Therefore,in-depth research into the function of FLASH may offer new perspectives for the treatment of related diseases.Our previous research identified FLASH as a bind-ing partner of p53,demonstrating that FLASH enhances the transcriptional activity of p53.Here we fur-ther investigate the molecular mechanisms of the interaction between FLASH and p53,revealing that the p53-K386R mutation(SUMOylation residue)attenuated its interaction with FLASH(aa 51-200)and FLASH-SIM(SUMO-interacting motif)(aa 1 534-1 806)significantly.However,SUMO can bind to FLASH-SIM directly,instead of FLASH(aa 51-200).Subsequent research shows that overexpression of FLASH in cells enhances global SUMO1 conjugation and p53-SUMO1 conjugation,therefore providing a plausible explanation for the underlying mechanism of FLASH enhancing the transcriptional activity of p53.Since promyelocytic leukemia protein nuclear body(PML NB)serves as subcellular reactors for SUMO conjugation within the cell,and the PML Ⅳ isoform can specifically enhance the SUMO modifica-tion of p53,we have investigated the interaction between FLASH and PML Ⅳ,and elucidated the struc-tural basis of their interaction:both FLASH-N3A(501-802)and FLASH-C2(1 807-1 981)bind to PML Ⅳ(aa 228-633).Further investigations reveal that they can synergistically enhance global SUMO1 modification as well as SUMO1 modification of p53.The interaction between FLASH and tumor suppres-sors p53 or PML Ⅳ enriches our understanding of its function and reveals the potential mechanism of FLASH in tumor development,therefore offering novel insights into cancer diagnosis and treatment.
5.Action mechanisms of Qianlie Jindan Tablets on chronic nonbcterial prostatitis in rats:An exploration based on non-targeted urine metabolomics
Teng-Fei CHEN ; Zhi-Chao JIA ; Zhuo-Zhuo SHI ; Jun-Guo MA ; Xiao-Lin LI ; Chong-Fu ZHONG
National Journal of Andrology 2024;30(6):531-539
Objective:To explore the mechanisms of Qianlie Jindan Tablets(QLJD)acting on chronic nonbacterial prostatitis(CNP)in rats based on non-targeted urine metabolomics.Methods:According to the body mass index,we equally randomized 30 eight-week-old male SD rats into a blank control,a CNP model control and a QLJD medication group.We established the CNP model in the latter groups and,from the 4th day of modeling,treated the rats in the blank and model control groups intragastrically with nor-mal saline and those in the QLJD medication group with QLJD suspension,qd,for 30 successive days.Then we detected the changes in the metabolites of the rats by ultra-high-performance liquid chromatography-tandem mass spectrometry,and identified the differential metabolites in different groups by multivariate statistical analysis,followed by functional annotation of the differential metabolites.Results:Eight common metabolites were identified by metabolomics analysis,of which 5 were decreased in the CNP model controls and increased in the QLJD medication group,while the other 3 increased in the former and decreased in the latter group.Creatinine and genistein were important differential metabolites,and the arginine and proline metabolic pathways and isoflavone biosynthesis pathways were the main ones for QLJD acting on CNP.Compared with the blank controls,the model controls showed up-regulated arginine and proline metabolic pathways,increased production of creatinine,down-regulated isoflavone biosynthetic pathway and decreased produc-tion of genistein.The above changes in the model controls were all reversed in the QLJD medication group.Conclusion:QLJD acts effectively on CNP in male rats by regulating L-arginine and proline metabolic pathways,as well as the isoflavone biosynthesis pathway and naringenin metabolism.
6.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
7.A case of progressive ossifying myositis caused by ACVR1 gene mutation
Si-Qin XIE ; Xiao-Fang DING ; Bing ZHANG ; Feng-Xia SHI ; Li-Li ZHONG ; Han HUANG
Chinese Journal of Contemporary Pediatrics 2024;26(9):961-966
A 2-year-and-10-month-old boy presented with multiple masses in the neck and chest for over 3 months.The child had a history of unstable walking,with hard lumps visible at the injury sites after falls,which would resolve on their own.Following a recent injury,a mass was discovered in the posterior neck,protruding above the skin surface and accompanied by limited joint movement.Gradually,new masses were found on the left side of the neck,back near the scapular lower angle,in the scapular fossa,and along the left axillary midline.Magnetic resonance imaging examination showed diffuse low signal on T1-weighted images and high signal on T2-weighted images in the bilateral posterior neck and back muscles two months ago.A CT scan revealed muscle swelling,with areas of patchy low density and multiple nodular high-density ossifications within some muscles.Genetic testing results indicated a mutation in the ACVR1 gene,leading to the final diagnosis of progressive ossifying myositis in this patient.This article summarizes the etiology,diagnosis,and treatment of one case of progressive ossifying myositis,providing a reference for clinicians.
8.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
9.Mechanism of Anti-inflammatory Effects of Bupi Yichang Pills on Inhibiting Glycolytic Metabolic Pathway in Mice with Experimental Colitis
Qiuping XIAO ; Jiaqi HUANG ; Qi WAN ; Min SHI ; Shanshan LI ; Duanyong LIU ; Liling CHEN ; Youbao ZHONG
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(1):1-9
Objective To investigate the anti-inflammatory effects of Bupi Yichang Pills on mice with experimental colitis and its potential mechanism of action.Methods Dextran sulfate sodium(DSS)was used to model the experimental colitis,and low-,medium-and high-doses of Bupi Yichang Pills(1.5,3.0,6.0 g·kg-1·d-1)and Mesalazine(300 mg·kg-1·d-1)were fed at the same time.Mice were observed for general behavior and weighed.Hematoxylin-eosin staining was used to observe the pathological injury of colonic tissues.qPCR and ELISA were used to detect the levels of inflammatory cytokines(TNF-α,IL-1β,IL-6,IL-10,IL-35 and TGF-β1),qPCR and Western Blot were used to detect the mRNA and protein levels of glucose transporters and glycolytic kinases.Results Low-,medium-and high-doses of Bupi Yichang Pills significantly down-regulated disease activity index in colitis mice(P<0.05,P<0.01).The body mass and colon length were significantly increased,while colon mass,colon mass index and unit colon mass index were significantly reduced(P<0.05,P<0.01),and ulcer formation and inflammatory cell infiltration in colonic tissue were significantly improved.In addition,medium-and high-doses of Bupi Yichang Pills significantly down-regulated the mRNA levels and concentrations of pro-inflammatory cytokines including TNF-α,IL-1β and IL-6(P<0.01),while significantly up-regulated the mRNA levels and concentrations of anti-inflammatory cytokines such as IL-10,IL-35 and TGF-β1(P<0.01).We further found that high-dose of Bupi Yichang Pills significantly down-regulated the mRNA and protein expressions of glucose transporters(Glut1,Glut2,Glut4)and glycolytic kinases(HK2,Aldolase A,PKM2)in colonic tissue(P<0.01).Conclusions Bupi Yichang Pills effectively alleviates DSS-induced experimental colitis,and its specific mechanism of action is related to the improvement of glycolytic metabolic pathways and the regulation of inflammatory cytokine expression.
10.Effects of sodium acetate on lowering uric acid and renal protection in mice with hyperuricemic nephropathy
Xue-Man LIN ; Shi-Qi ZHONG ; Yong-Mei LI ; Xiao-Yi QIN ; He-Yang JIANG ; Jia-Xin ZHOU ; Jian-Xin PANG ; Ting WU
The Chinese Journal of Clinical Pharmacology 2024;40(15):2222-2226
Objective To investigate the renal protective effect and mechanism of sodium acetate(Ace)on hyperuricemic nephropathy(HN)in mice.Methods Uric acid nephropathy mice model was prepared by intraperitoneal injection of potassium oxonate combined with adenine gavage.Mice were divided into blank control group(0.9%NaCl+0.5%carboxymethyl cellulose sodium),Ace group(200 mmol·L-1 Ace+0.5%carboxymethyl cellulose sodium),model group(0.9%NaCl+350 mg·kg-1 potassium oxonate+70 mg·kg-1 adenine),and experimental group(based on model group with additional 200 mmol·L-1 Ace).Serum and urine uric acid(UA)and serum creatinine(SCr)levels were observed in each group.Real-time fluorescence quantitative reverse transcription-polymerase chain reaction(qRT-PCR)was used to detect the expression levels of kidney injury molecule-1(Kim-1)and anti-aging gene Klotho,renal fibrosis markers Collagen Ⅰ and Fibronectin,intestinal inflammation-related factors interleukin-1 β(IL-1 β),and mRNA expression levels of tight junction proteins Zo-1.Results The serum UA levels of blank control group,Ace group,model group,and experimental group mice were(259.52±24.40),(227.71±35.91),(604.06±73.55),and(496.24±30.16)μmol·L-1,respectively;SCr levels were(16.85±0.40),(16.18±0.94),(22.38±1.56),and(19.78±1.43)μmol·L-1;Kim-1 mRNA relative expression levels were 1.04±0.25,1.17±0.28,13.00±2.87,and 4.24±3.92;Klotho mRNA relative expression levels were 1.04±0.15,1.02±0.18,0.43±0.12,and 0.69±0.12;Collagen Ⅰ mRNA relative expression levels were 1.05±0.15,1.02±0.18,3.19±1.09,and 1.61±0.55;Fibronectin mRNA relative expression levels were 1.07±0.18,1.02±0.25,7.86±2.40,and 3.34±2.10;intestinal IL-1β mRNA relative expression levels were 1.00±0.01,1.01±0.03,2.55±0.63,and 1.21±0.28;intestinal Zo-1 mRNA relative expression levels were 1.00±0.07,1.07±0.09,0.54±0.20,and 0.92±0.17.The above indicators in blank control group compared with model group,and experimental group compared with model group,all showed statistically significant differences(P<0.05,P<0.01,P<0.001).Conclusion Sodium acetate can effectively reduce UA levels in HN mice,significantly improve renal injury and fibrosis,and its mechanism may be related to the improvement of intestinal inflammatory response and up-regulation of intestinal Zo-1/Occuludin pathway to reduce intestinal mucosal permeability.

Result Analysis
Print
Save
E-mail