1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
3.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
4.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
5.Cardamomine attenuates cardiotoxicity induced by anthracyclines in rats by regulating Notch/NF-κB signal pathway mediated pyroptosis
Xiao-Lei YU ; Wen-Xin LI ; Pan-Pan CHEN ; Yun-Fei LIANG ; Yan-Rong CUI ; Hai-Jing JIAO ; Fan XU
The Chinese Journal of Clinical Pharmacology 2024;40(9):1277-1281
Objective To investigate the protective effect of cardamomine(CAR)on anthracycline-induced cardiotoxicity in rats by regulating the pyroptosis mediated by Notch/nuclear factor-κB(NF-κB)signal pathway.Methods The rat model of cardiotoxicity was established by intraperitoneal injection of doxorubicin(DOX).The model rats were randomly divided into DOX group,CAR-L group,CAR-H group and Jagged1 group.Another 10 rats were taken as the control group.The control group and the DOX group were given the same amount of 0.9%NaCl.The CAR-L group and CAR-H group were given 40 and 80 mg·kg-1 CAR by gavage,respectively.The Jagged1 group was given 80 mg·kg-1 CAR+and 25 ng·kg-1 Jagged1 by gavage once a day for 4 weeks.Myocardial injury markers creatine kinase isoenzyme(CK-MB)and troponin Ⅰ(cTn Ⅰ)were detected by kit.The expression of pyroptosis protein Nod-like receptor protein 3(NLRP3)and desquamate D(GSDM-D)were observed by immunohistochemistry.The expression of Notch1 and phosphorylated NF-κB p65(p-NF-κB p65)protein in myocardial tissue was detected by Western blotting.Results The levels of CK-MB in control group,DOX group,CAR-L group,CAR-H group and Jagged1 group were(48.51±5.39),(175.93±13.27),(106.83±9.73),(83.71±8.39)and(126.08±9.74)U·L-1;the levels of cTn Ⅰ were(1.95±0.18),(12.46±1.83),(7.15±0.64),(4.13±0.38)and(8.01±0.78)ng·mL-1;the average optical density of NLRP3 protein were 0.19±0.07,0.36±0.05,0.25±0.05,0.21±0.03 and 0.31±0.06;the average optical density of GSDM-D were 0.18±0.04,0.43±0.06,0.24±0.03,0.19±0.04 and 0.32±0.05.There were significant differences in the above indexes between DOX group and control group(all P<0.05).There were significant differences in the above indexes between CAR-L group,CAR-H group and DOX group(all P<0.05),and there were significant differences between CAR-L group and CAR-H group(all P<0.05).The above indexes in Jagged1 group were significantly different from those in CAR-H group(all P<0.05).Conclusion CAR can improve myocardial injury in DOX cardiotoxic rats,reduce oxidative stress,inflammatory reaction and pyroptosis,and its mechanism may be related to the inhibition of Notch/NF-κB pathway.
6.A Prognostic Model Based on Colony Stimulating Factors-related Genes in Triple-negative Breast Cancer
Yu-Xuan GUO ; Zhi-Yu WANG ; Pei-Yao XIAO ; Chan-Juan ZHENG ; Shu-Jun FU ; Guang-Chun HE ; Jun LONG ; Jie WANG ; Xi-Yun DENG ; Yi-An WANG
Progress in Biochemistry and Biophysics 2024;51(10):2741-2756
ObjectiveTriple-negative breast cancer (TNBC) is the breast cancer subtype with the worst prognosis, and lacks effective therapeutic targets. Colony stimulating factors (CSFs) are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells, playing an important role in the malignant progression of TNBC. This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes (CRGs), and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy. MethodsWe downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database. Through LASSO Cox regression analysis, we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score (CRRS). We further analyzed the correlation between CRRS and patient prognosis, clinical features, tumor microenvironment (TME) in both high-risk and low-risk groups, and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy. ResultsWe identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model. Kaplan-Meier survival curves, time-dependent receiver operating characteristic curves, and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival, and the predictive ability of CRRS prognostic model was further validated using the GEO dataset. Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients. Moreover, patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil, ipatasertib, and paclitaxel. ConclusionWe have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs, which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment. Moreover, the key genes within this model may represent potential molecular targets for future therapies of TNBC.
7.Clinical Observation on Chaihu Shugansan Combined with Xuanfu Daizhetang in Treating Barrett's Esophagus with Liver-stomach Disharmony
Xiao WANG ; Xiaosu WANG ; Bingduo ZHOU ; Guangsu XIONG ; Qi YU ; Ji SUN ; Yun ZHOU ; Yi JING ; Shengliang ZHU ; Li LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):10-17
ObjectiveTo observe the clinical efficacy and safety of Chaihu Shugansan combined with Xuanfu Daizhetang (CHSG-XFDZ) in the management of Barrett's esophagus (BE) with liver-stomach disharmony. MethodA randomized, parallel, controlled, double-blind clinical trial was conducted. BE patients who met the inclusion criteria were randomized into an observation group and a control group, with 34 patients in each group. The observation group was treated with CHSG-XFDZ combined with omeprazole capsules, and the control group was treated with CHSG-XFDZ mimetic combined with omeprazole capsules. Both groups were treated for 12 weeks. The traditional Chinese medicine (TCM) symptom scores, response rate, BE lesion area, BE pathological changes, and bile acid profile were taken as the indicators to jointly evaluate the clinical efficacy and safety of the two groups. ResultA total of 62 patients who completed the trial were included for statistical analysis, including 32 in the observation group and 30 in the control group. There were no statistically significant differences in baseline demographics or disease characteristics between two groups, which suggested that the two groups were comparable. The total response rate in the observation group was 93.7% (30/32), which was higher than that (60.0%, 18/30) in the control group (χ2=24.766, P<0.05). After treatment, the response rate regarding the pathological changes in the observation group was 62.5% (20/32), which was higher than that (23.3%, 7/30) in the control group (χ2=10.270, P<0.05). The response rate regarding the BE lesion area change in the observation group was 21.9% (7/32), which had no statistically significant difference from that (6.7%, 2/30) in the control group, which indicated that the advantages of the two regimens were not obvious in terms of reducing the area of BE lesions. Compared with the control group after treatment, the observation group regulated the bile acid profile, which pointed out the direction for further exploring the mechanism of CHSG-XFDZ in treating BE. Neither group showcased adverse reactions with clinical significance during the treatment period. ConclusionCHSG-XFDZ outperformed the control group in terms of alleviating TCM symptoms, ameliorating pathological changes, and improving the bile acid profile in the BE patients with liver-stomach disharmony. It demonstrates certain potential in reducing the lesion area. This formula is safe and effective in treating BE patients with liver-stomach disharmony and deserves further clinical research and widespread application.
8.The taste correction process of ibuprofen oral solution based on the combination of electronic tongue technology and artificial taste comprehensive evaluation
Rui YUAN ; Yun-ping QU ; Yan WANG ; Ya-xuan ZHANG ; Wan-ling ZHONG ; Xiao-yu FAN ; Hui-juan SHEN ; Yun-nan MA ; Jin-hong YE ; Jie BAI ; Shou-ying DU
Acta Pharmaceutica Sinica 2024;59(8):2404-2411
This experiment aims to study the taste-masking effects of different kinds of corrigent used individually and in combination on ibuprofen oral solution, in order to optimize the taste-masking formulation. Firstly, a wide range of corrigent and the mass fractions were extensively screened using electronic tongue technology. Subsequently, a combination of sensory evaluation, analytic hierarchy process (AHP)-fuzzy mathematics evaluation, and Box-Behnken experimental design were employed to comprehensively assess the taste-masking effects of different combinations of corrigent on ibuprofen oral solution, optimize the taste-masking formulation, and validate the results. The study received ethical approval from the Review Committee of the Beijing University of Chinese Medicine (ethical code: 2024BZYLL0102). The results showed that corrigent fractions and types were screened separately through single-factor experiments. Subsequently, a Box-Behnken response surface design combined with AHP and fuzzy mathematics evaluation was used to fit a functional model:
9.Jianwei Xiaozhang Tablets Improves Precancerous Lesions of Gastric Cancer in Rats via Regulating PI3K-Akt-eNOS Pathway
Hai-Yang HUANG ; Shao-Wen ZHONG ; Yun AN ; Yu-Xin WANG ; Shu-Min ZHU ; Jie GAO ; Xiao-Min LU ; Ming-Guo DONG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):709-718
Objective To investigate the therapeutic effect and mechanism of Jianwei Xiaozhang Tablets on rats with precancerous lesions of gastric cancer(PLGC).Methods Forty male SD rats were randomly divided into the normal group,the model group,the folic acid group and the Jianwei Xiaozhang Tablets group,with 10 rats in each group.In addition to the normal group,the other three groups of rats were prepared by gavage with Ranitidine Aqueous Solution combined with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)solution drinking method for the preparation of PLGC model.After successful modeling,drugs were administered accordingly for 7 weeks.The changes in body mass of rats during modeling and drug administration were recorded,the gross view of the stomach was observed and scored pathologically,the coefficients of spleen and liver were determined,the pathological changes in gastric tissue were observed by hematoxylin-eosin(HE)staining,enzyme-linked immunosorbent assay(ELISA)was used to measure serum gastrin(GAS),motilin(MTL)and glucagon(GC),Alisin Blue-Periodic Acid Schiff's(AB-PAS)staining was used to observe the thickness of the mucosal layer of gastric tissues,the expressions of phosphatidylinositol 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),phosphorylated Akt(p-Akt),and endothelial-type nitric oxide synthase(eNOS)proteins in gastric tissues were detected by protein immunoblotting(Western Blot),and the expression of vascular endothelial growth factor A(VEGFA)protein in gastric tissues was detected by immunofluorescence staining.Results Compared with the normal group,the body mass of rats in the model group grew slowly during the experimental period,gastric macroscopic pathological scores were significantly increased(P<0.01),splenic coefficient and hepatic coefficient were significantly decreased(P<0.01),the gastric tissues showed cuprocyte hyperplasia and intestinal chemotaxis,gastric tissues'inflammation scores were significantly increased(P<0.01),the serum GAS content was significantly increased(P<0.01),and the MTL,GC contents were significantly reduced(P<0.05),and the thickness of the mucous membrane layer of gastric tissue was significantly reduced(P<0.05),the protein expression levels of PI3K,p-PI3K,Akt,p-Akt and eNOS were reduced(P<0.01),and the protein expression level of VEGFA was reduced(P<0.01);compared with the model group,the above indexes of the Jianwei Xiaozhang Tablets group and the folic acid group were all significantly improved(P<0.05 or P<0.01),among which,the Jianwei Xiaozhang Tablets group had a better improvement effect in the proliferation of cup cells and intestinal chemotaxis in gastric tissues,the content of serum GAS,and the thickness of the mucous layer in gastric tissues.Conclusion The mechanism of the improvement of PLGC in rats by Jianwei Xiaozhang Tablets may be related to the activation of the PI3K-Akt-eNOS pathway,which in turn promotes the angiogenesis and repair of gastric damaged tissues.
10.Protective effect and mechanism of acellular nerve allografts combined with electroacupuncture on spinal ganglia in rats with sciatic nerve injury
Ze-Yu ZHOU ; Yun-Han MA ; Jia-Rui LI ; Yu-Meng HU ; Bo YUAN ; Yin-Juan ZHANG ; Xiao-Min YU ; Xiu-Mei FU
Acta Anatomica Sinica 2024;55(2):143-149
Objective To investigate the protective effect and mechanism of acellular nerve allografts(ANA)combined with electroacupuncture on spinal ganglia in rats with sciatic nerve injury(SNI).Methods Totally 50 male adult SD rats were randomly selected for this experiment.Ten rats were prepared for the ANA.Forty male SD rats were randomly divided into normal group,model group,ANA group and combinational group,with 10 rats in each group.The SNI model was established by cutting off the nerves 10 mm at the 5 mm on the inferior border of piriformis after separating the right sciatic nerves.The rats in the ANA group were bridged with ANA to the two broken ends of injured nerves.The rats in the combinational group were treated with electroacupuncture 2 days after ANA bridging,Huantiao(GB30)and Yanglingquan(GB34)were performed as the acupuncture points,each electroacupuncture lasted 15 minutes and 7 days as a course of treatment,4 courses in all.Sciatic nerve conduction velocity was measured by electrophysiology to evaluate the regeneration of damaged axons.Morphology of spinal ganglia was observed by Nissl staining.The expression of nerve growth factor(NGF)and brain-derived neurotrophic factor(BDNF)were detected by Western blotting and immunofluorescent staining.Results Compared with the normal group,the sciatic nerve conduction velocity in model group decreased significantly(P<0.01),Nissl bodies in neurons of spinal ganglia were swollen and dissolved,with incomplete structure and the number decreased dramatically(P<0.01),while the level of NGF and BDNF also decreased significantly(P<0.01).Compared with the model group,the sciatic nerve conduction velocity in ANA and combinational groups strongly increased(P<0.01),the damage of Nissl bodies in neurons of spinal ganglia reduced and the number obviously increased(P<0.01),the level of NGF and BDNF increased considerably(P<0.01).Compared with the ANA group,the sciatic nerve conduction velocity in combinational group increased significantly(P<0.01),the morphology of Nissl bodies in neurons of spinal ganglia were more regular and the number increased(P<0.01),moreover,the level of NGF also increased significantly(P<0.01).Conclusion ANA combined with electroacupuncture can enhance the sciatic nerve conduction velocity,improve the morphology of neurons in spinal ganglia and play a protective effect on spinal ganglia.The mechanism can be related to the higher expression of NGF and BDNF proteins,especially the expression of NGF protein.

Result Analysis
Print
Save
E-mail