1.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
2.Artificial intelligence in natural products research.
Xiao YUAN ; Xiaobo YANG ; Qiyuan PAN ; Cheng LUO ; Xin LUAN ; Hao ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1342-1357
Artificial intelligence (AI) has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research. Natural medicines, characterized by their complex chemical compositions and multifaceted pharmacological mechanisms, demonstrate widespread application in treating diverse diseases. However, research and development face significant challenges, including component complexity, extraction difficulties, and efficacy validation. AI technology, particularly through deep learning (DL) and machine learning (ML) approaches, enables efficient analysis of extensive datasets, facilitating drug screening, component analysis, and pharmacological mechanism elucidation. The implementation of AI technology demonstrates considerable potential in virtual screening, compound optimization, and synthetic pathway design, thereby enhancing natural medicines' bioavailability and safety profiles. Nevertheless, current applications encounter limitations regarding data quality, model interpretability, and ethical considerations. As AI technologies continue to evolve, natural medicines research and development will achieve greater efficiency and precision, advancing both personalized medicine and contemporary drug development approaches.
Biological Products/pharmacology*
;
Artificial Intelligence
;
Humans
;
Drug Discovery/methods*
;
Machine Learning
;
Deep Learning
3.Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells.
Yi WANG ; Xiao-Yu SUN ; Fang-Qi MA ; Ming-Ming REN ; Ruo-Han ZHAO ; Meng-Meng QIN ; Xiao-Hong ZHU ; Yan XU ; Ni-da CAO ; Yuan-Yuan CHEN ; Tian-Geng DONG ; Yong-Fu PAN ; Ai-Guang ZHAO
Journal of Integrative Medicine 2025;23(3):320-332
OBJECTIVE:
Gastric cancer (GC) is one of the most common malignancies seen in clinic and requires novel treatment options. Morin is a natural flavonoid extracted from the flower stalk of a highly valuable medicinal plant Prunella vulgaris L., which exhibits an anti-cancer effect in multiple types of tumors. However, the therapeutic effect and underlying mechanism of morin in treating GC remains elusive. The study aims to explore the therapeutic effect and underlying molecular mechanisms of morin in GC.
METHODS:
For in vitro experiments, the proliferation inhibition of morin was measured by cell counting kit-8 assay and colony formation assay in human GC cell line MKN45, human gastric adenocarcinoma cell line AGS, and human gastric epithelial cell line GES-1; for apoptosis analysis, microscopic photography, Western blotting, ubiquitination analysis, quantitative polymerase chain reaction analysis, flow cytometry, and RNA interference technology were employed. For in vivo studies, immunohistochemistry, biomedical analysis, and Western blotting were used to assess the efficacy and safety of morin in a xenograft mouse model of GC.
RESULTS:
Morin significantly inhibited the proliferation of GC cells MKN45 and AGS in a dose- and time-dependent manner, but did not inhibit human gastric epithelial cells GES-1. Only the caspase inhibitor Z-VAD-FMK was able to significantly reverse the inhibition of proliferation by morin in both GC cells, suggesting that apoptosis was the main type of cell death during the treatment. Morin induced intrinsic apoptosis in a dose-dependent manner in GC cells, which mainly relied on B cell leukemia/lymphoma 2 (BCL-2) associated agonist of cell death (BAD) but not phorbol-12-myristate-13-acetate-induced protein 1. The upregulation of BAD by morin was due to blocking the ubiquitination degradation of BAD, rather than the transcription regulation and the phosphorylation of BAD. Furthermore, the combination of morin and BCL-2 inhibitor navitoclax (also known as ABT-737) produced a synergistic inhibitory effect in GC cells through amplifying apoptotic signals. In addition, morin treatment significantly suppressed the growth of GC in vivo by upregulating BAD and the subsequent activation of its downstream apoptosis pathway.
CONCLUSION
Morin suppressed GC by inducing apoptosis, which was mainly due to blocking the ubiquitination-based degradation of the pro-apoptotic protein BAD. The combination of morin and the BCL-2 inhibitor ABT-737 synergistically amplified apoptotic signals in GC cells, which may overcome the drug resistance of the BCL-2 inhibitor. These findings indicated that morin was a potent and promising agent for GC treatment. Please cite this article as: Wang Y, Sun XY, Ma FQ, Ren MM, Zhao RH, Qin MM, Zhu XH, Xu Y, Cao ND, Chen YY, Dong TG, Pan YF, Zhao AG. Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells. J Integr Med. 2025; 23(3): 320-332.
Humans
;
Flavonoids/therapeutic use*
;
Stomach Neoplasms/pathology*
;
Animals
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Ubiquitination/drug effects*
;
Mice
;
Drug Synergism
;
Mice, Inbred BALB C
;
Mice, Nude
;
Xenograft Model Antitumor Assays
;
Flavones
4.Advancements and applications in radiopharmaceutical therapy.
Shiya WANG ; Mingyi CAO ; Yifei CHEN ; Jingjing LIN ; Jiahao LI ; Xinyu WU ; Zhiyue DAI ; Yuhan PAN ; Xiao LIU ; Xian LIU ; Liang-Ting LIN ; Jianbing WU ; Ji LIU ; Qifeng ZHONG ; Zhenwei YUAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):641-657
Radiopharmaceuticals operate by combining radionuclides with carriers. The radiation energy emitted by radionuclides is utilized to selectively irradiate diseased tissues while minimizing damage to healthy tissues. In comparison to external beam radiation therapy, radionuclide drugs demonstrate research potential due to their biological targeting capabilities and reduced normal tissue toxicity. This article reviews the applications and research progress of radiopharmaceuticals in cancer treatment. Several key radionuclides are examined, including 223Ra, 90Y, Lutetium-177 (177Lu), 212Pb, and Actinium-225 (225Ac). It also explores the current development trends of radiopharmaceuticals, encompassing the introduction of novel radionuclides, advancements in imaging technologies, integrated diagnosis and treatment approaches, and equipment-medication combinations. We review the progress in the development of new treatments, such as neutron capture therapy, proton therapy, and heavy ion therapy. Furthermore, we examine the challenges and breakthroughs associated with the clinical translation of radiopharmaceuticals and provide recommendations for the research and development of novel radionuclide drugs.
Humans
;
Radiopharmaceuticals/therapeutic use*
;
Neoplasms/radiotherapy*
;
Radioisotopes/therapeutic use*
;
Animals
5.Laboratory Diagnosis and Molecular Epidemiological Characterization of the First Imported Case of Lassa Fever in China.
Yu Liang FENG ; Wei LI ; Ming Feng JIANG ; Hong Rong ZHONG ; Wei WU ; Lyu Bo TIAN ; Guo CHEN ; Zhen Hua CHEN ; Can LUO ; Rong Mei YUAN ; Xing Yu ZHOU ; Jian Dong LI ; Xiao Rong YANG ; Ming PAN
Biomedical and Environmental Sciences 2025;38(3):279-289
OBJECTIVE:
This study reports the first imported case of Lassa fever (LF) in China. Laboratory detection and molecular epidemiological analysis of the Lassa virus (LASV) from this case offer valuable insights for the prevention and control of LF.
METHODS:
Samples of cerebrospinal fluid (CSF), blood, urine, saliva, and environmental materials were collected from the patient and their close contacts for LASV nucleotide detection. Whole-genome sequencing was performed on positive samples to analyze the genetic characteristics of the virus.
RESULTS:
LASV was detected in the patient's CSF, blood, and urine, while all samples from close contacts and the environment tested negative. The virus belongs to the lineage IV strain and shares the highest homology with strains from Sierra Leone. The variability in the glycoprotein complex (GPC) among different strains ranged from 3.9% to 15.1%, higher than previously reported for the seven known lineages. Amino acid mutation analysis revealed multiple mutations within the GPC immunogenic epitopes, increasing strain diversity and potentially impacting immune response.
CONCLUSION
The case was confirmed through nucleotide detection, with no evidence of secondary transmission or viral spread. The LASV strain identified belongs to lineage IV, with broader GPC variability than previously reported. Mutations in the immune-related sites of GPC may affect immune responses, necessitating heightened vigilance regarding the virus.
Humans
;
China/epidemiology*
;
Genome, Viral
;
Lassa Fever/virology*
;
Lassa virus/classification*
;
Molecular Epidemiology
;
Phylogeny
6.(Meta)transcriptomic Insights into the Role of Ticks in Poxvirus Evolution and Transmission: A Multicontinental Analysis.
Yu Xi WANG ; Jing Jing HU ; Jing Jing HOU ; Xiao Jie YUAN ; Wei Jie CHEN ; Yan Jiao LI ; Qi le GAO ; Yue PAN ; Shui Ping LU ; Qi CHEN ; Si Ru HU ; Zhong Jun SHAO ; Cheng Long XIONG
Biomedical and Environmental Sciences 2025;38(9):1058-1070
OBJECTIVE:
Poxviruses are zoonotic pathogens that infect humans, mammals, vertebrates, and arthropods. However, the specific role of ticks in transmission and evolution of these viruses remains unclear.
METHODS:
Transcriptomic and metatranscriptomic raw data from 329 sampling pools of seven tick species across five continents were mined to assess the diversity and abundance of poxviruses. Chordopoxviral sequences were assembled and subjected to phylogenetic analysis to trace the origins of the unblasted fragments within these sequences.
RESULTS:
Fifty-eight poxvirus species, representing two subfamilies and 20 genera, were identified, with 212 poxviral sequences assembled. A substantial proportion of AT-rich fragments were detected in the assembled poxviral genomes. These genomic sequences contained fragments originating from rodents, archaea, and arthropods.
CONCLUSION
Our findings indicate that ticks play a significant role in the transmission and evolution of poxviruses. These viruses demonstrate the capacity to modulate virulence and adaptability through horizontal gene transfer, gene recombination, and gene mutations, thereby promoting co-existence and co-evolution with their hosts. This study advances understanding of the ecological dynamics of poxvirus transmission and evolution and highlights the potential role of ticks as vectors and vessels in these processes.
Animals
;
Poxviridae/physiology*
;
Ticks/virology*
;
Phylogeny
;
Transcriptome
;
Evolution, Molecular
;
Poxviridae Infections/virology*
;
Genome, Viral
7.Associations of Exposure to Typical Environmental Organic Pollutants with Cardiopulmonary Health and the Mediating Role of Oxidative Stress: A Randomized Crossover Study.
Ning GAO ; Bin WANG ; Ran ZHAO ; Han ZHANG ; Xiao Qian JIA ; Tian Xiang WU ; Meng Yuan REN ; Lu ZHAO ; Jia Zhang SHI ; Jing HUANG ; Shao Wei WU ; Guo Feng SHEN ; Bo PAN ; Ming Liang FANG
Biomedical and Environmental Sciences 2025;38(11):1388-1403
OBJECTIVE:
The study aim was to investigate the effects of exposure to multiple environmental organic pollutants on cardiopulmonary health with a focus on the potential mediating role of oxidative stress.
METHODS:
A repeated-measures randomized crossover study involving healthy college students in Beijing was conducted. Biological samples, including morning urine and venous blood, were collected to measure concentrations of 29 typical organic pollutants, including hydroxy polycyclic aromatic hydrocarbons (OH-PAHs), bisphenol A and its substitutes, phthalates and their metabolites, parabens, and five biomarkers of oxidative stress. Health assessments included blood pressure measurements and lung function indicators.
RESULTS:
Urinary concentrations of 2-hydroxyphenanthrene (2-OH-PHE) ( β = 4.35% [95% confidence interval ( CI): 0.85%, 7.97%]), 3-hydroxyphenanthrene ( β = 3.44% [95% CI: 0.19%, 6.79%]), and 4-hydroxyphenanthrene (4-OH-PHE) ( β = 5.78% [95% CI: 1.27%, 10.5%]) were significantly and positively associated with systolic blood pressure. Exposures to 1-hydroxypyrene (1-OH-PYR) ( β = 3.05% [95% CI: -4.66%, -1.41%]), 2-OH-PHE ( β = 2.68% [95% CI: -4%, -1.34%]), and 4-OH-PHE ( β = 3% [95% CI: -4.68%, -1.29%]) were negatively associated with the ratio of forced expiratory volume in the first second to forced vital capacity. These findings highlight the adverse effects of exposure to multiple pollutants on cardiopulmonary health. Biomarkers of oxidative stress, including 8-hydroxy-2'-deoxyguanosine and extracellular superoxide dismutase, mediated the effects of multiple OH-PAHs on blood pressure and lung function.
CONCLUSION
Exposure to multiple organic pollutants can adversely affect cardiopulmonary health. Oxidative stress is a key mediator of the effects of OH-PAHs on blood pressure and lung function.
Humans
;
Oxidative Stress/drug effects*
;
Male
;
Cross-Over Studies
;
Female
;
Young Adult
;
Environmental Pollutants/toxicity*
;
Environmental Exposure/adverse effects*
;
Biomarkers/blood*
;
Adult
;
Blood Pressure/drug effects*
;
Polycyclic Aromatic Hydrocarbons/urine*
;
Beijing
8.Budd-Chiari syndrome with hepatopulmonary syndrome: a case report and literature review
Fengyan TIAN ; Xiao DONG ; Xiaohan HOU ; Ruyue YUAN ; Yuanwei PAN ; Da ZHANG
Chinese Journal of Pediatrics 2024;62(1):71-75
Objective:To summarize the clinical features and prognosis of Budd-Chiari syndrome with hepatopulmonary syndrome (HPS) in children.Methods:The clinical data of a child who had Budd-Chiari syndrome with HPS treated at the Department of Pediatrics of the First Affiliated Hospital of Zhengzhou University in December 2016 was analyzed retrospectively. Taking "Budd-Chiari syndrome" and "hepatopulmonary syndrome" in Chinese or English as the keywords, literature was searched at CNKI, Wanfang, China Biomedical Literature Database and PubMed up to July 2023. Combined with this case, the clinical characteristics, diagnosis, treatment and prognosis of Budd-Chiari syndrome with HPS in children under the age of 18 were summarized.Results:A 13-year-old boy, presented with cyanosis and chest tightness after activities for 6 months, and yellow staining of the skin for 1 week. Physical examination at admission not only found mild yellow staining of the skin and sclera, but also found cyanosis of the lips, periocular skin, and extremities. Laboratory examination showed abnormal liver function with total bilirubin 53 μmol/L, direct bilirubin 14 μmol/L, and indirect bilirubin 39 μmol/L, and abnormal blood gas analysis with the partial pressure of oxygen of 54 mmHg (1 mmHg=0.133 kPa), the partial pressure of carbon dioxide of 31 mmHg, and the alveolar-arterial oxygen gradient of 57 mmHg. Hepatic vein-type Budd-Chiari syndrome, cirrhosis, and portal hypertension were indicated by abdominal CT venography. Contrast-enhanced transthoracic echocardiography (CE-TTE) was positive. After symptomatic and supportive treatment, this patient was discharged and received oxygen therapy outside the hospital. At follow-up until March 2023, there was no significant improvement in hypoxemia, accompanied by limited daily activities. Based on the literature, there were 3 reports in English while none in Chinese, 3 cases were reported. Among a total of 4 children, the chief complaints were dyspnea, cyanosis, or hypoxemia in 3 cases, and unknown in 1 case. There were 2 cases diagnosed with Budd-Chiari syndrome with HPS at the same time due to respiratory symptoms, and 2 cases developed HPS 1.5 years and 8.0 years after the diagnosis of Budd-Chiari syndrome respectively. CE-TTE was positive in 2 cases and pulmonary perfusion imaging was positive in 2 cases. Liver transplantation was performed in 2 cases and their respiratory function recovered well; 1 case received oxygen therapy, with no improvement in hypoxemia; 1 case was waiting for liver transplantation.Conclusions:The onset of Budd-Chiari syndrome with HPS is insidious. The most common clinical manifestations are dyspnea and cyanosis. It can reduce misdiagnosis to confirm intrapulmonary vascular dilatations with CE-TTE at an early stage. Liver transplantation is helpful in improving the prognosis.
9.Nutritional status of pediatric patients undergoing allogeneic hematopoietic stem cell transplantation
Mei YAN ; Wei-Bing TANG ; Yong-Jun FANG ; Jie HUANG ; Ting ZHU ; Jin-Yu FU ; Xiao-Na XIA ; Chang-Wei LIU ; Yuan-Yuan WAN ; Jian PAN
Parenteral & Enteral Nutrition 2024;31(5):257-261
Objective:To observe the changes in the nutritional status of pediatric patients after allogeneic hematopoietic stem cell transplantation(allo-HSCT)for one year,and to analyze the risk factors.Methods:We collected data from 88 pediatric patients who underwent allo-HSCT at the Department of Hematology and Oncology in Children's Hospital of Nanjing Medical University between May 2018 and November 2022.All pediatric patients underwent nutritional status analysis before transplantation,at enrollment,3 months,6 months and 1 year after allo-HSCT.Linear regression model was used to analyze the risk factors for growth rate.Results:The body mass index Z score(BMI-Z)before allo-HSCT was(0.096±1.349),and decreased to(-0.258±1.438)、(-0.715±1.432)、(-0.584±1.444)at enrollment,3 months,6 months after allo-HSCT,and(-0.130±1.317)at 1 year after allo-HSCT(P<0.001).There was no significant change in BMI-Z between pre-transplantation and 1 year after transplantation(P=1.000).Height for age Z score(HAZ)before transplantation was(0.137±1.305)and decreased to(-0.083±1.267)、(-0.221±1.299)、(-0.269±1.282)in 3 months,6 months and 1 year after allo-HSCT(P<0.001).Multivariate linear regression showed that age≥10 years old(P=0.015)and chronic graft-versus-host disease(cGVHD)(P=0.005)were independent risk factors for change in HAZ.Conclusion:The BMI-Z of pediatric patients treated with allo-HSCT returned to the pre-transplantation level after one year,while HAZ continued to decrease.Allo-HSCT may cause impaired growth rate in pediatric patients.Attention should be paid to HAZ changes in pediatric patients before and after allo-HSCT,especially in pediatric patients≥10 years old of age and those with cGVHD.Effective nutritional intervention should be provided in time.
10.Research progress on neurobiological mechanisms underlying antidepressant effect of ketamine
Dong-Yu ZHOU ; Wen-Xin ZHANG ; Xiao-Jing ZHAI ; Dan-Dan CHEN ; Yi HAN ; Ran JI ; Xiao-Yuan PAN ; Jun-Li CAO ; Hong-Xing ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1622-1627
Major depressive disorder(MDD)is a prevalent con-dition associated with substantial impairment and low remission rates.Traditional antidepressants demonstrate delayed effects,low cure rate,and inadequate therapeutic effectiveness for man-aging treatment-resistant depression(TRD).Several studies have shown that ketamine,a non-selective N-methyl-D-aspartate receptor(NMDAR)antagonist,can produce rapid and sustained antidepressant effects.Ketamine has demonstrated efficacy for reducing suicidality in TRD patients.However,the pharmaco-logical mechanism for ketamine's antidepressant effects remains incompletely understood.Previous research suggests that the an-tidepressant effects of ketamine may involve the monoaminergic,glutamatergic and dopaminergic systems.This paper provides an overview of the pharmacological mechanism for ketamine's anti-depressant effects and discuss the potential directions for future research.

Result Analysis
Print
Save
E-mail