1.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
2.Analysis of the safety, economic benefit and social psychological satisfaction of day breast conserving surgery for breast cancer
Jiao ZHOU ; Xiaoxiao XIAO ; Jiabin YANG ; Yu FENG ; Huanzuo YANG ; Mengxue QIU ; Qing ZHANG ; Yang LIU ; Mingjun HUANG ; Peng LIANG ; Zhenggui DU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):160-166
Objective To investigate the safety, economic benefits and psychological effects of day breast conserving surgery for breast cancer. Methods The demographic data and clinical data of breast cancer patients undergoing day (day surgery group) and ward (ward surgery group) breast conserving surgeries in West China Hospital of Sichuan University from March 2020 to June 2021 were retrospectively collected; the demographic data, clinical data, medical and related transportation costs, and preoperative and postoperative BREAST-Q scores of breast cancer patients undergoing day (day surgery group) and ward (ward surgery group) breast conserving surgery in West China Hospital of Sichuan University from June 2021 to June 2022 were prospectively collected. The safety, economic benefit, and psychological satisfaction of day surgery was analyzed. Results A total of 42 women with breast cancer were included in the retrospective study and 39 women with breast cancer were included in the prospective study. In both prospective and retrospective studies, the mean age of patients in both groups were <50 years. There were only statistical differences between the two groups in the aspects of hypertension (P=0.022), neoadjuvant chemotherapy (P=0.037) and postoperative pathological estrogen receptor (P=0.033) in the prospective study. In postoperative complications, there were no statistical differences in the surgical-related complications or anesthesia-related complications between the two groups in either the prospective study or the retrospective study (P>0.05). In terms of the overall cost, we found that the day surgery group was more economical than the ward surgery group in the prospective study (P=0.002). There were no statistical differences in postoperative psychosocical well-being, sexual well-being, satisfaction with breasts or chest condition between the two groups (P>0.05). Conclusion It is safe and reliable to carry out breast conserving surgery in day surgery center under strict management standards, which can save medical costs and will not cause great psychological burden to patients.
3.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
4.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
5.The mechanism of Laggerae Herba in improving chronic heart failure by inhibiting ferroptosis through the Nrf2/SLC7A11/GPX4 signaling pathway
Jinling XIAO ; Kai HUANG ; Xiaoqi WEI ; Xinyi FAN ; Wangjing CHAI ; Jing HAN ; Kuo GAO ; Xue YU ; Fanghe LI ; Shuzhen GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):343-353
Objective:
To investigate the role and mechanism of the heat-clearing and detoxifying drug Laggerae Herba in regulating the nuclear factor-erythroid 2-related factor-2(Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway to inhibit ferroptosis and improve chronic heart failure induced by transverse aortic arch constriction in mice.
Methods:
Twenty-four male ICR mice were divided into the sham (n=6) and transverse aortic arch constriction groups (n=18) according to the random number table method. The transverse aortic arch constriction group underwent transverse aortic constriction surgery to establish models. After modeling, the transverse aortic arch constriction group was further divided into the model, captopril, and Laggerae Herba groups according to the random number table method, with six mice per group. The captopril (15 mg/kg) and Laggerae Herba groups (1.95 g/kg) received the corresponding drugs by gavage, whereas the sham operation and model groups were administered the same volume of ultrapure water by gavage once a day for four consecutive weeks. After treatment, the cardiac function indexes of mice in each group were detected using ultrasound. The heart mass and tibia length were measured to calculate the ratio of heart weight to tibia length. Hematoxylin and eosin staining were used to observe the pathological changes in myocardial tissue. Masson staining was used to observe the degree of myocardial fibrosis. Wheat germ agglutinin staining was used to observe the degree of myocardial cell hypertrophy. Prussian blue staining was used to observe the iron deposition in myocardial tissue. An enzyme-linked immunosorbent assay was used to detect the amino-terminal pro-brain natriuretic peptide (NT-proBNP) and glutathione (GSH) contents in mice serum. Colorimetry was used to detect the malondialdehyde (MDA) content in mice serum. Western blotting was used to detect the Nrf2, GPX4, SLC7A11, and ferritin heavy chain 1 (FTH1) protein expressions in mice cardiac tissue.
Results:
Compared with the sham group, in the model group, the ejection fraction (EF) and fractional shortening (FS) of mice decreased, the left ventricular end-systolic volume (LVESV) and left ventricular end-systolic diameter (LVESD) increased, the left ventricular anterior wall end-systolic thickness (LVAWs) and left ventricular posterior wall end-systolic thickness (LVPWs) decreased, the ratio of heart weight to tibia length increased, the myocardial tissue morphology changed, myocardial fibrosis increased, the cross-sectional area of myocardial cells increased, iron deposition appeared in myocardial tissue, the serum NT-proBNP and MDA levels increased, the GSH level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue decreased (P<0.05). Compared with the model group, in the captopril and Laggerae Herba groups, the EF, FS, and LVAWs increased, the LVESV and LVESD decreased, the ratio of heart weight to tibia length decreased, the myocardial cells were arranged neatly, the degree of myocardial fibrosis decreased, the cross-sectional area of myocardial cells decreased, the serum NT-proBNP level decreased, and the GSH level increased. Compared with the model group, the LVPWs increased, the iron deposition in myocardial tissue decreased, the serum MDA level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue increased (P<0.05) in the Laggerae Herba group.
Conclusion
Laggerae Herba improves the cardiac function of mice with chronic heart failure caused by transverse aortic arch constriction, reduces the pathological remodeling of the heart, and reduces fibrosis. Its mechanism may be related to Nrf2/SLC7A11/GPX4 pathway-mediated ferroptosis.
6.Pathophysiological Evolution and Syndrome-Based Stratified Treatment of Qi Deficiency with Stagnation in Chemotherapy-Induced Myelosuppression
Jing LONG ; Hengzhou LAI ; Wenbo HUANG ; Feng YU ; Yifang JIANG ; Zhuoling DAI ; Chong XIAO ; Fengming YOU
Journal of Traditional Chinese Medicine 2025;66(11):1109-1113
The concept of "qi deficiency with stagnation" refers to a pathological state characterized by the depletion of primordial qi, impaired qi transformation, and the development of internal stagnation. Under the cyclic chemotherapy regimen in oncology, chemotherapy-induced myelosuppression follows a progressive pathological course from qi deficiency to increasing stagnation. This sequential evolution from mild to severe myelosuppression closely aligns with the dynamic syndrome differentiation and treatment framework of "qi deficiency with stagnation". "Qi deficiency" reflects the gradual depletion of qi, blood, and essence, while "stagnation" refers to the accumulation of phlegm, turbid dampness, and blood stasis. These two components interact reciprocally, forming a vicious cycle where deficiency leads to stagnation, and stagnation further damages the healthy qi. In the early stage of mild myelosuppression, chemotoxicity begins to accumulate in the bone marrow, leading to qi consumption, blood deficiency, yin injury, and the gradual formation of turbid phlegm and damp stagnation. In the advanced stage of severe myelosuppression, the accumulation of toxicity causes qi sinking, exhaustion of essence, and marrow depletion, along with blood stasis obstructing the collaterals. Treatment strategies should be based on syndrome differentiation, with an emphasis on assessing the severity of the condition, balancing deficiency and excess, and achieving both symptomatic relief and root cause resolution.
7.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
8.Seroprevalence and influencing factors of low-level neutralizing antibodies against SARS-CoV-2 in community residents
Shiying YUAN ; Jingyi ZHANG ; Huanyu WU ; Weibing WANG ; Genming ZHAO ; Xiao YU ; Xiaoying MA ; Min CHEN ; Xiaodong SUN ; Zhuoying HUANG ; Zhonghui MA ; Yaxu ZHENG ; Jian CHEN
Shanghai Journal of Preventive Medicine 2025;37(5):403-409
ObjectiveTo understand the seropositivity of neutralizing antibodies (NAb) and low-level NAb against SARS-CoV-2 infection in the community residents, and to explore the impact of COVID-19 vaccination and SARS-CoV-2 infection on the levels of NAb in human serum. MethodsOn the ground of surveillance cohort for acute infectious diseases in community populations in Shanghai, a proportional stratified sampling method was used to enroll the subjects at a 20% proportion for each age group (0‒14, 15‒24, 25‒59, and ≥60 years old). Blood samples collection and serum SARS-CoV-2 NAb concentration testing were conducted from March to April 2023. Low-level NAb were defined as below the 25th percentile of NAb. ResultsA total of 2 230 participants were included, the positive rate of NAb was 97.58%, and the proportion of low-level NAb was 25.02% (558/2 230). Multivariate logistic regression analysis indicated that age, infection history and vaccination status were correlated with low-level NAb (all P<0.05). Individuals aged 60 years and above had the highest risk of low-level NAb. There was a statistically significant interaction between booster vaccination and one single infection (aOR=0.38, 95%CI: 0.19‒0.77). Compared to individuals without vaccination, among individuals infected with SARS-CoV-2 once, both primary immunization (aOR=0.23, 95%CI: 0.16‒0.35) and booster immunization (aOR=0.12, 95%CI: 0.08‒0.17) significantly reduced the risk of low-level NAb; among individuals without infections, only booster immunization (aOR=0.28, 95%CI: 0.14‒0.52) showed a negative correlation with the risk of low-level NAb. ConclusionsThe population aged 60 and above had the highest risk of low-level NAb. Regardless of infection history, a booster immunization could reduce the risk of low-level NAb. It is recommended that eligible individuals , especially the elderly, should get vaccinated in a timely manner to exert the protective role of NAb.
9.Effect of Endoplasmic Reticulum Stress on Intestinal Mucosal Injury in Ulcerative Colitis and TCM Intervention Based on Theory of Sores Depending on Spleen-earth
Youwei XIAO ; Dongsheng WU ; Hui CAO ; Bo ZOU ; Yiqian YU ; Ruoru HUANG ; Qi CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):238-247
In recent years, as the incidence of ulcerative colitis (UC) is growing, intestinal mucosal injury has garnered increasing attention, and it is characterized by high recurrence, risk of inflammation-cancer transformation, and difficulty in repair. Intestinal mucosal injury in UC is centered on persistent inflammation and barrier dysfunction, with its pathological mechanisms involving endoplasmic reticulum stress (ERS)-mediated changes such as abnormal apoptosis, abnormal autophagy, and inflammatory responses. ERS induces apoptosis of intestinal epithelial cells, disrupts tight junction proteins, and exacerbates inflammatory responses through pathways such as protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 alpha (IRE1α), and activating transcription factor 6 (ATF6), ultimately causing intestinal mucosal injury. Traditional Chinese medicine (TCM) has a long history of research on UC. The theory of sores depending on spleen-earth holds that spleen deficiency is the fundamental cause of UC, while pathological products such as dampness-turbidity and blood stasis are the secondary manifestations. Dysfunction of the spleen-earth leads to insufficient production and transformation of Qi and blood, malnutrition of the intestinal mucosa, and invasion of external pathogens. In the active phase of UC, spleen deficiency is often accompanied by excessive pathogenic factors such as dampness-heat and heat-toxin, leading to acute intestinal mucosal damage. In the remission phase, however, it is mainly characterized by spleen deficiency and healthy Qi deficiency, accompanied by residual pathogens, resulting in weak intestinal mucosal repair. Studies have shown that the endoplasmic reticulum, as a key site for protein synthesis and folding, has functions highly similar to the TCM concept of the spleen governing transportation and transformation. From a TCM perspective, the endoplasmic reticulum can be regarded as the carrier of spleen transportation, and ERS is a microcosmic manifestation of spleen dysfunction, leading to intestinal mucosal injury. ERS impairs the structure and function of the endoplasmic reticulum, induces the generation of abnormal Qi, and triggers pathological changes, making inflammation difficult to be reduced and causing the aggravation of ERS, forming a vicious cycle of spleen deficiency-pathological products-intestinal injury. TCM has unique advantages in regulating ERS to prevent and treat intestinal mucosal injury. According to the theory of sores depending on spleen-earth and the modern medical understanding of ERS, this paper delves into the TCM and Western medicine pathogenesis of intestinal mucosal injury in UC. Furthermore, this paper discusses the roles of TCM active components and compound formulas in reducing intestinal mucosal injury in UC by regulating ERS under the guidance of the treatment principles of invigorating the spleen and replenishing Qi as the key and dispelling dampness and removing blood stasis as the supplementation, aiming to provide new ideas and methods for the prevention and treatment of UC.
10.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum
Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
Platycodonis Radix is the dry root of


Result Analysis
Print
Save
E-mail